Разрез стены из газобетона с утеплителем и облицовкой: Нужно ли утеплять стены из газобетона?
Содержание
10 ошибок при возведении стен из газобетона
Сегодня мы расскажем об ошибках, которые чаще всего допускают при сооружении газобетонных частных домов. Казалось бы, откуда взяться ошибкам? Ведь технология устройства зданий из газобетона детально продумана, есть национальный стандарт по ним*, ведущие производители блоков, в частности Ytong, предоставляют подробные инструкции, блоки легко укладывать и обрабатывать. Тем не менее, культура строительства в нашей стране всё ещё «хромает на обе ноги», и неверные решения при работе с газобетоном, увы, не редкость.
Негативные последствия этих ошибок – те же, что и в случае любой неправильно выполненной каменной кладки (из полнотелого кирпича, поризованной керамики, пенобетона и пр.). Главная проблема – трещины, которые распространяются по кладке. В принципе появление трещин, даже сквозных шириной до 2 мм в каменных наружных стенах, не считается признаком аварийного состояния здания**. Однако это может приводить к другим неприятностям:
- Распространение трещин по наружной и внутренней отделке. Может потребоваться дорогостоящий ремонт.
- Промерзание стен и, как следствие, увеличение затрат на отопление
- Ухудшение микроклимата в жилых помещениях.
- При самом неудачном исходе – нарушение целостности конструкции здания.
Появление трещин может быть вызвано целым рядом нарушений, допущенных строителями.
1. Ошибки при сооружении фундамента
Фундамент в виде железобетонной плиты
Кладка из газобетона – не самая прочная на изгиб. И если фундамент, на который она опирается, недостаточно жесткий и устойчивый, имеет существенные отклонения по геометрии, не соответствует типу грунта и рельефу местности на участке, то кладка может в каких-то местах прогнуться и треснуть. Чтобы этого не произошло, нужно грамотно проектировать и качественно выполнять фундамент. При его сооружении следует учитывать:
- Особенности грунта на участке: степень его пучинистости, уровень залегания грунтовых вод. Эту информацию можно получить только на основании инженерно-геологических изысканий. Метод «опроса соседей» крайне не точный, и полагаться на него нельзя.
- Специфику рельефа местности: наличие уклона, перепадов по высоте.
- Все нагрузки на основание. Их можно определить только с помощью расчёта, выполненного профессиональным конструктором.
Специалисты рекомендуют устраивать под газобетонным домом железобетонный фундамент. Хорошо работают малозаглубленные ленты или плиты, в том числе очень популярные сегодня утеплённая шведская плита (УШП) и утеплённый финский фундамент (УФФ, лента в сочетании с утепленными полами по грунту). Допустимы, помимо прочих, и фундаменты из блоков ФБС с обязательным обвязочным поясом по верхнему ряду, например, монолитным.
2. Ошибки при укладке первого ряда блоков
Выравнивание блоков первого ряда
Первый ряд блоков задаёт геометрию всей кладки. Если выложить его недостаточно ровно, с отклонениями от нужных высотных отметок, со смещёнными диагоналями, то исправить ошибки последующими рядами не получится. Наоборот, ошибки будут только нарастать.
Блоки первого ряда укладывают на обычный цементно-песчаный раствор толщиной не более 20 мм. Но это не означает, что раствором можно выровнять сильные перепады по высоте на плоскости фундамента. Допустимое отклонение от линии горизонта – 30 мм. Если оно больше, придётся выравнивать фундамент (за счёт подрядчика, некачественно выполнившего свою работу) и только затем начинать кладку.
Небольшие перепады по высоте между соседними в ряду блоками устраняют шлифовальной доской или рубанком. Ровность кладки контролируют с помощью лазерного или оптического нивелира.
Первый ряд блоков обязательно нужно обезопасить от капиллярного подъёма влаги через фундамент. Для этого между стеной и фундаментом предусматривают гидроизоляцию – битумные рулонные и обмазочные материалы, полимерцементные составы и др.
Подробнее о работе с газобетоном можно узнать на курсах по строительству из Ytong
3. Ошибки при выборе клеевого состава
Нанесение тонкошовного клеевого состава
Большая ошибка – возводить стены из газобетона с помощью обычного цементно-песчаного раствора, получая при этом ту же толщину шва, что и в традиционных каменных стенах – до 12 мм. Столь толстый шов приводит к существенным потерям тепла из дома, сводя на нет преимущество газобетона в энергоэффективности над другими каменными материалами. И наоборот, если использовать специальный клей для газобетона, толщина шва будет составлять всего 1-3 мм, теплопотери минимальны.
Обычный раствор вместо клея выбирают люди, которые хотят сэкономить, но неправильно оценивают возможные затраты. Растворный шов толще клеевого в 4 раза и потому расход на него в 4 раза больше. Притом стоимость обычной цементно-песчаной смеси в 2 раза дешевле, чем клея. В итоге – двойная переплата за обычный раствор. Плюс более высокие затраты на его транспортировку.
Клей для тонкошовной кладки Ytong
Другая ошибка – использовать дешёвый клей вместо более дорогого, но рекомендованного производителем блоков. Чем опасен дешёвый? В нём может быть большое содержание трёхкальцевого алюмината, из-за которого состав оказывается не сульфатостойким. Такой клей может со временем выкрашиваться и вызывать растрескивание кладки по шву. В связи с чем Ytong рекомендует использовать только клей под собственной торговой маркой. Потому что этот состав протестирован в ведущих немецких лабораториях, и его качество не вызывает сомнений. Подробнее о клее Ytong можно узнать по ссылке
4. Ошибки при перевязке блоков
Кладка должна выдерживать изгибающие и срезающие усилия. Для этого нужно правильно перевязывать соседние ряды блоков. Согласно российским нормам***, величина перевязки блоков высотой 250 мм должна составлять не менее 40% от высоты блока. То есть не менее 100 мм. Немецкие нормы, на которые ориентируется Ytong, ещё строже – не менее 125 мм. Притом запрещено использовать в кладке обрезанные элементы короче 50 мм. А обрезок большего размера допустимо располагать на удалении 125 мм от шва между блоками нижнего ряда. Неправильно выполненная перевязка чревата образованием трещин.
5. Ошибки при сопряжении несущих стен и перегородок
Сопряжение стен с помощью гибких связей
Недопустимо жёстко сопрягать несущие стены с перегородками, то есть перевязывать их блоками или, например, соединять обрезками арматуры, забитыми в стены. В месте такого сопряжения могут появиться трещины. Дело в том, что несущие и ненесущие стены нагружены по-разному и дают неодинаковую осадку. Чтобы компенсировать её, их сопряжение выполняют с помощью гибких связей (анкеров), допускающих небольшие деформации.
Перевязка блоками
Но друг с другом несущие стены (наружные и внутренние) и перегородки, напротив, должны соединяться жёстко – за счёт перевязки.
6. Отсутствие армирования в подоконных зонах
Армирование подоконной зоны
Вопреки расхожему мнению, кладку из качественного газобетона армировать не обязательно. Однако всегда следует армировать подоконные зоны, поскольку в углах проёмов концентрируются серьёзные напряжения, и их нужно «снять». Для этого в подоконном ряду боков устанавливают арматуру: она должна выступать за границы проёма с каждой стороны на расстояние не менее 50 см. Обычно применяют два прутка стальной (реже – композитной) арматуры диаметром 8-10 мм. Прутки укладывают в предварительно выполненные штробы, а затем заливают цементным раствором или клеем для газобетона. При монтаже арматуры в раствор сечение штробы должно быть не менее 40х40 мм, а при монтаже в клеевой состав достаточно сечения 20х20 мм. Каждую штробу выполняют на расстоянии 50-60 мм от края кладки. Также допустимо армировать базальтовыми или стекловолоконными сетками.
Конструкция оконного проёма
Если же строители забыли про армирование подоконных зон, то, скорее всего, появления трещин в углах проёмов не избежать.
7. Разрывы в армопоясе
Отсутствие армопояса под кровлей приводит к появлению трещин
Нередко строители забывают про железобетонный армопояс, в частности, под перекрытием по деревянным балкам. Или допускают серьёзные ошибки при его устройстве. Например, в зоне крыши предусматривают армопояс только под мауэрлатом – брусом, который служит опорой для стропил. Но не делают его по фронтонам, то есть не замыкают его в неразрывный контур по периметру здания. В таком случае стропила распирают стены, и появляются трещины в кладке.
Армопояс под мауэрлат
Вывод: необходимо продолжать армопояс по фронтонам, замыкая его.
Работы по усилению конструкции дома после его возведения
В крайнем случае – устранять распор за счёт дополнительных стоек под крышей.
Устройство армопояса при возведении здания
Армопояс нужен для распределения равномерной нагрузки на стены и фундамент здания. Армопояс устраивают в несущих стенах под перекрытиями и крышей. Обычно он представляет собой армированную железобетонную балку сечением не менее 100х100 мм. Эту балку сооружают, например, внутри U-образных газобетонных блоков или между стандартными блоками небольшой толщины (перегородочными). Чтобы дом не промерзал, армопояс закрывают с внешней стороны теплоизоляционными плитами (толщиной 30-50 мм), как правило, из пенополистирола.
8. Несущий железобетонный каркас в малоэтажном здании
Некоторые заказчики считают газобетон недостаточно прочным материалом и потому при строительстве двух- или трёхэтажного дома предусматривают несущий каркас из монолитного железобетона, который заполняют газобетоном. Это неоправданное и нерациональное усложнение. Кладка из газобетонных блоков является несущей стеной, и потому пользы от такого каркаса нет. А вот вред – ощутимый. Железобетонная конструкция оказывается масштабным мостиком холода, её требуется утеплять. Лишние бетонные работы (опалубка, армирование, раствор) в сочетании с дополнительным утеплением, – всё это значительные траты денег и времени, которые совершенно не нужны.
9. Паронепроницаемая наружная отделка
Разрушение отделки из-за применения паронепроницаемой штукатурки
Газобетон приходит на стройплощадку, имея повышенную влажность. Кроме того, он пропускает водяной пар, стремящийся из жилых помещений на улицу (чем ниже плотность блоков, тем выше их паропроницаемость). Большая ошибка – «запечатывать» стены из газобетона паронепроницаемой отделкой, например, цементной штукатуркой плотностью более 1300 кг/м3, тем более сразу после завершения кладочных работ. Стены не просохнут от строительной и производственной влажности, что обернётся снижением срока службы как самого газобетона, так и отделки.
Разрушение отделки из-за применения паронепроницаемой штукатурки
Последствия применения высокоплотной цементной штукатурки
Кроме того, не следует возводить кладку из облицовочного керамического кирпича вплотную к газобетонной стене: кирпич менее паропроницаем, чем газобетон. При сооружении такой облицовки оставляют вентиляционный зазор не менее 40 мм между ней и стеной. И обязательны гибкие связи из нержавеющей стали или стеклопластика между кирпичной и газобетонной кладками.
Крепление кирпичной облицовке к стене из газобетона
Другие популярные облицовочные материалы — декоративный бетонный камень и клинкерная плитка. Они также имеют низкую паропроницаемость, и если они будут закрывать более 25% площади фасада, то нужно предусматривать для них вентфасад с подсистемой.
Вентфасад поверх стены из газобетона
10. Паронепроницаемая теплоизоляция
Если же нужно утеплить газобетонные стены, то безопаснее всего применять паропроницаемую теплоизоляцию – из каменного или стеклянного волокна. А вот с полимерными теплоизоляционными материалами (ЭППС, ППС, ППУ, PIR), имеющими очень низкую паропроницаемость, всё сложнее. В принципе их можно использовать, но с рядом оговорок:
Нельзя крепить их на свежую, не до конца высохшую кладку.
Толщина полимерного утеплителя должна обеспечивать не менее половины термического сопротивления ограждающих конструкций. Например, стену из блоков D500 толщиной 300 мм нужно утеплять плитами из экструдированного пенополистирола толщиной 100 мм и более.
Желательно теплоизолировать полимерными материалами дома, где в постоянном режиме работает приточно-вытяжная вентиляция, удаляющая из помещений избыточный водяной пар.
Подробнее о работе с газобетоном можно узнать на курсах по строительству из Ytong
* СТО НОСТРОЙ 2.9.136-2013
** Согласно СП 15.13330.2012
*** СТО НОСТРОЙ 2.9.136-2013
Ошибки при строительстве здания из газобетона
Стена из Газобетона: Расчет, Кладка, Утепление, Отделка
Стена из газобетонных блоков
Ячеистые бетоны в последние годы стали очень востребованы при возведении стен в частном малоэтажном строительстве благодаря своим теплосберегающим свойствам. Одно- или двухслойная стена из газобетона толщиной 40 см удерживает тепло в здании так же, как почти двухметровая кирпичная. Даже не учитывая более низкую стоимость газоблоков по сравнению с кирпичом, экономия очевидна.
Но у этого материала есть и свои недостатки, и слабые стороны. Поэтому для него разработана своя технология строительства. Если вы собираетесь строить дом из газоблоков, её основные требования нужно знать и учитывать.
Содержание статьи
- Конструкции газобетонных стен
- Виды блоков
- Виды газобетонных стен
- Расчет газобетонных блоков и клея
- Технологические особенности возведения газобетонных стен
- Особенности кладки
- Укрепление газобетонных стен
- Увязка перегородок с несущими стенами
- Расчет свайного фундамента
- Отделка
- Штукатурка
- Облицовка кирпичом
- Устройство вентилируемых фасадов
- Внутренняя отделка
- Заключение
Конструкции газобетонных стен
Газобетон для наружных стен производится нескольких типов. Каждый из них отличается техническими параметрами и областью применения.
Виды блоков
Определить тип стенового блока можно по маркировке, которая указывает на его удельную плотность в кг/м3. Чем она выше, тем прочнее материал, но ниже его энергоэффективность. Чем ниже, тем выше пористость и меньше прочность.
- D300 – D500 – теплоизоляционные виды блоков;
- D500 – D900 – конструкционно-теплоизоляционные;
- D1000 – D1200 – конструкционные.
На фото видна разница между материалами с разной удельной плотностью
Выбирая тип материала, необходимо учитывать назначение здания и вид стен. Если для хозяйственных построек теплоизоляционные характеристики не имеют большого значения, то для жилых домов они важны не меньше, чем несущие. Поэтому при их возведении постройка стен из газобетона обычно осуществляется блоками D500 – D600.
Обратите внимание. Газоблоки более высоких марок прочнее, но обладают высокой теплопроводностью. Стены из них должны быть толще или лучше утеплены. Используются они для возведения домов высотой более двух этажей.
Виды газобетонных стен
Одна из основных задач при проектировании такого дома – определение толщины стен и их конструкции с учетом норм теплосбережения. Расчет стен из газобетона производится на основании коэффициента теплопроводности материала и климатических условий в вашем регионе.
Существует несколько вариантов устройства наружных стен:
Вид конструкции | Описание |
Однослойная | Однослойная конструкция состоит из блоков, оштукатуренных снаружи с использованием армирующей сетки. |
Двухслойная с теплоизоляцией | Штукатурный слой наносится поверх утеплителя, закрепленного на стенах. |
Двухслойная с облицовкой | Несущие стены состоят из ряда газобетонных блоков и кирпича с обязательным вентиляционным зазором между ними. |
Трехслойная с вентилируемым фасадом | В этом случае слой утеплителя закрывается листовыми фасадными материалами по обрешетке. |
В средней полосе нашей страны если при строительстве дома используется газобетон стена толщиной 40 см с отделкой штукатуркой – вполне приемлемый вариант. В более холодных регионах сооружают многослойные конструкции.
Газобетонная стена в разрезе: видны заполненные газом поры, благодаря которым удерживается тепло
Расчет газобетонных блоков и клея
Технологические особенности возведения газобетонных стен
Чтобы в полной мере использовать теплоизоляционные свойства газобетона, создав при этом надежное и долговечное строение, следует придерживаться рекомендованной технологии строительства.
Сравнение теплоэффективности разных материалов
Особенности кладки
Термоотдача у газобетона гораздо ниже, чем у бетона или цементного раствора. Поэтому большие швы из обычного кладочного раствора снижают способность стен из газоблоков сохранять тепло. Они становятся мостиками холода, опоясывающими здание по всей площади.
Чтобы не создавать их, инструкция рекомендует использовать для кладки специальные профессиональные клеевые смеси. Они обеспечивают отличное сцепление блоков друг с другом при толщине шва всего 1-3 мм.
Специальный клей для кладки газоблоков
Обратите внимание. Многих частных застройщиков пугает высокая цена клея. Но за счет экономичного расхода и простоты приготовления его применение оказывается выгодным.
Для получения тонких и ровных швов рекомендуется использовать и специальный инструмент вместо обычного мастерка и кельмы.
Клеевая смесь распределяется специальной кареткой с зубчатым краем
- На цементно-песчаный раствор укладывается только первый ряд блоков. Это делается для того, чтобы выровнять уровень кладки за счет толщины швов с минимальной погрешностью, а не повторять изгибы фундамента.
Первый ряд задает правильный уровень для кладки
- Первый ряд – самый важный и трудоемкий. Под него обязательно укладывают слой горизонтальной гидроизоляции из двух листов рубероида, чтобы газобетонные блоки не тянули в себя влагу, поднимающуюся из грунта по фундаменту.
- Кладка начинается с выявления наивысшей точки фундамента. На неё и по углам устанавливаются первые блоки, по которым задается отметка первого ряда.
Монтаж первого углового блока
- После его полной укладки выполняется стачивание неровностей и окончательное выравнивание поверхности.
Если все сделано аккуратно, выкладывать своими руками следующие ряды по уровню будет намного проще, так как блоки имеют стандартные габаритные размеры, а специальный инструмент позволяет делать одинаковые по толщине швы. Дальнейшая кладка выполняется на клей с перевязкой рядов минимум на одну треть.
При использовании блоков с монтажными пазами их края также рекомендуется промазывать клеем, если в дальнейшем не запланирована штукатурка стен
У застройщиков нередко возникает и такой вопрос: можно ли заливать газобетон в стену?
Ведь это совсем исключит наличие мостиков холода в виде цементных или клеевых швов. В принципе это возможно, и многие строительные компании используют этот метод, изготавливая рабочий раствор прямо на стройплощадке в газобетонных смесителях и заливая его в несъемную опалубку.
Монолитный газобетон в наружных стенах заливается в опалубку
Но нужно иметь в виду, что в этом случае материал не проходит термообработку, закалку паром под давлением, поэтому не достигает достаточной прочности. Основную нагрузку должны будут взять на себя вертикальный армирующий каркас и несъемная опалубка.
Каркас будущего дома
Укрепление газобетонных стен
Большие габариты газобетонных блоков – одно из его достоинств, позволяющее вести строительство быстро и с малым расходом кладочной смеси. Но оно же делает их уязвимыми к неравномерной осадке фундамента, из-за которой нередко возникают трещины в газобетонных стенах, образуется раскрытие вертикальных швов.
Трещина в газобетонной стене – результат несоблюдения технологии строительства
Чтобы этого не происходило, нужно знать, как укрепить стену из газобетона ещё на этапе её возведения. Для этого в процессе кладки блоков выполняется армирование, а в местах максимальной нагрузки устраивается монолитный железобетонный пояс.
На заметку: Чтобы стена не треснула из-за усадки, в каждом четвертом ряду кладки прорезаются борозды, в которые укладываются арматурные стержни. Они должны быть утоплены в тело блоков полностью, чтобы не влиять на толщину шва.
Такое армирование выполняют и в самом первом ряду, если он опирается на мелкозаглубленный фундамент или свайный ростверк. А также в рядах под оконные проемы в газобетонном доме и в зонах опирания перемычек.
Монолитный пояс на газобетонную стену устраивается вместо рядов, на которые опираются перекрытия или элементы кровли. Он и принимает на себя основную нагрузку.
Для создания армопояса используют:
- Бетон марки не ниже М200;
- Арматурные стержни диаметром от 12 мм, которые собираются в каркас вязальной проволокой.
Армирующий каркас в полости для заливки монолитного пояса
Обратите внимание. Между элементами каркаса и внутренними стенками полости должны оставаться зазоры в 3-5 см. Заполненные бетоном, они предотвратят коррозию металлической арматуры.
Выполненный по всем правилам, он выдерживает огромные изгибающие нагрузки, что предотвращает деформацию всей конструкции и появление таких дефектов, как трещина в стене из газобетона.
Тут возникает важная проблема: коэффициент теплопередачи бетона намного выше, чем у газоблока. И если швы считаются мостиками холода, то монолитный пояс из этого материала можно назвать открытыми воротами для проникновения холода в здание.
Решают эту проблему двумя способами:
- Устройством теплоизоляционной обвязки для армопояса. Для чего опалубку с внешней стороны перед установкой в неё арматурного каркаса и заливкой бетона выкладывают пенополистиролом или листами жесткой базальтовой ваты толщиной не менее 10 см.
Утепление армопояса пенопластом
- Использованием специальных элементов из газобетона П-образного профиля.
U-блок с полостью для армирования
Во время заливки бетона его тщательно утрамбовывают и при необходимости устанавливают закладные элементы. Например, анкера, с помощью которых крепится мауэрлат или балка перекрытия на газобетонной стене.
На схеме показано крепление мауэрлата к стене из газобетона
Поверхность бетона сразу после заливки тщательно выравнивается. Продолжать работу по кладке стен или устройству перекрытий можно только через несколько дней, когда он наберет прочность.
Оконный или дверной проем в стене из газобетона также перекрывается монолитной перемычкой, устраиваемой аналогично армопоясу с применением опалубки. Но возможны и другие варианты. Например, использование специальной армированной перемычки из газобетона или кладка рядовых блоков на металлические уголки.
Увязка перегородок с несущими стенами
Не несущие перегородки и простенки из газобетона часто возводят после монтажа коробки и перекрытий. Их можно ставить на плиты перекрытия или ленточные фундаменты глубиной всего 30-40 см. Так как перегородки делаются максимум из 200-х блоков, а чаще хватает и меньшей толщины, то они не оказывают большой нагрузки на основание.
Блоки для перегородок имеют толщину 100, 150 и 200 мм
Здесь действуют следующие правила:
- Первый ряд блоков укладывается на цементно-песчаный раствор, остальные на клей. Под первый ряд желательно уложить упругую подкладку, например, из пенополистирола;
- Перегородка не должна доходить до плиты перекрытия, между ними нужно оставлять 1,5-2 см свободного пространства, которое заполняется монтажной пеной или утеплителем. Если этого не сделать или заполнить промежуток раствором, прогнувшаяся под собственным весом плита передаст нагрузку на простенок и он треснет.
Сопряжение перегородки с потолком
- Крепление к стене из газобетона следует осуществлять с помощью гибких связей – перфорированных анкеров или оцинкованных перфолент. Отрезок ленты закладывается в шов кладки на глубину 30-40 см, а её свободный конец крепится к несущей стене специальными дюбелями. Точно так же перегородка фиксируется на потолке – это видно на предыдущем фото.
Схема крепления перегородки к несущей стене
Расчет свайного фундамента
Выберите тип ростверка:
Параметры ростверка:
Ширина ростверка А (мм)
Длина ростверка B (мм)
Высота ростверка C (мм)
Толщина ростверка D (мм)
Марка бетона
М100 (В7,5)М150 (В10)М200 (В15)М250 (В20)М300 (В22.5)М350 (В25)М400 (В30)М450 (В35)М500 (В40)М550 (В45)М600 (В50)М700 (В55)М800 (В60)
Параметры столбов и свай:
Количество столбов и свай (шт)
Диаметр столба D1 (мм)
Высота столба h2 (мм)
Диаметр основания столба D2 (мм)
Высота основания столба h3 (мм)
Расчет арматуры:
Длина стержня арматуры (м)
Расчет опалубки ростверк:
Ширина доски (мм)
Длина доски (мм)
Толщина доски (мм)
Отделка
На теплосберегающие и прочностные характеристики газобетона отрицательное влияние оказывает вода, которая быстро впитывается в пористую структуру материала. Защитить его поможет качественная отделка.
Штукатурка
Так как газобетон обладает высокой паропроницаемостью, то для его отделки должны использоваться продукты с аналогичными свойствами. В противном случае стены будут увлажняться выпадающим на них конденсатом.
При отделке фасада из материала газобетон обработка стен должна выполняться штукатуркой для наружных работ
Это важно! Для утепления газобетонных стен не рекомендуется использовать пенопласт и аналогичные ему материалы, так как они обладают практически нулевой паропроницаемостью.
На этой схеме показан разрез газобетонных стен, отделанных штукатуркой
Облицовка кирпичом
Облицовочный кирпич обладает хорошей паропроницаемостью, водо- и морозостойкостью. Стена из кирпича и газобетона – это красивое, надежное и долговечное решение. Но такую облицовку нужно планировать ещё на этапе проектирования дома, чтобы заложить под него мощный и достаточно широкий фундамент.
Кроме того, при отделке фасадов кирпичом нужно учитывать следующие моменты:
- Устраивать между газобетонной и кирпичной кладкой вентилируемый зазор для испарения лишней влаги;
- Обеспечить защиту облицовки от ветровой нагрузки. Так как кладка ведется в полкирпича, наружная стена получается тонкой и недостаточно устойчивой. Поэтому её необходимо перевязывать с газоблоками. Для этого удобно использовать все те же гибкие связи – с их помощью удается без проблем осуществлять перевязку двух кладок с не совпадающей порядовкой.
Крепление облицовки к несущей стене
Устройство вентилируемых фасадов
В качестве облицовки могут использоваться любые материалы – сайдинг, дерево, керамогранит, панели из искусственного камня и композитных материалов. Сложность устройства таких фасадов заключается в креплении каркаса к газобетонным стенам.
Обычные крепежные элементы плохо держатся в пористом материале, особенно под нагрузкой, поэтому вместо них следует использовать специальные нейлоновые или металлические дюбели.
Дюбели для газобетона
Совет. Если вы не знаете, как повесить шкаф на стену из газобетона, решить её помогут эти же дюбели. Отверстия для них нужно делать чуть меньше их диаметра. Для надежности в отверстия можно забивать плиточный клей, затем вставлять дюбели, а после высыхания раствора вкручивать саморезы.
Внутренняя отделка
Отделывать стены внутри можно любым способом – штукатурить, облицовывать гипсокартоном или декоративными панелями и даже красить прямо по блокам. Ведь при аккуратной кладке на клей поверхность получается ровной и гладкой, практически бесшовной.
Так выглядит покраска стен из газобетона
Главное – соблюдать одно важное условие: паропроницаемость стен по направлению наружу должна увеличиваться.
Заключение
О газобетоне ходит много мифов, связанных с его недостаточной прочностью, гигроскопичностью и другими характеристиками. Видео в этой статье развенчивает их, показывая все достоинства и недостатки материала.
Если точно соблюдать технологию укладки блоков и правильно проектировать узлы стен из газобетона, ваш дом будет теплым и уютным и простоит сотню лет, с каждым годом становясь только прочнее.
Автоклавный газобетон Aercon AAC
You are here : Home / Техническая информация / Обзор
Обзор PDF
Aercon Building Systems
Не нагрузка на стенную систему
Aercon Product
1. Блок
2. U-Block
3. Блок языка и канавки
4. Cored Block
5. Lintel
6. ValuBlock (с плоской поверхностью или с шипами и пазами)
7. Горизонтальная стеновая панель
8. Вертикальная настенная панель
9. Внутренняя стена расстояние
10. Панель пола
11. Панель крыши
Стеновая система подшипника нагрузки
Aercon Product
1. Блок
2. Block
3. Блок с гребнем и пазом
4. Блок с сердечником
5. Перемычка
6. ValuBlock (с плоской поверхностью или с концами с гребнем и пазом)
7. Горизонтальная стеновая панель
8. Вертикальная стеновая панель
9. Перегородка внутренней стены
10. Панель пола
11. Панель крыши
Стандартные соединительные профили
- Замковые соединения Sure
- Простое выравнивание соединений
- Прочная структурная целостность
Стеновые панели с шпунтовыми или гладкими соединениями.
Панели пола и крыши с затиркой швов и без нее.
Блоки с гребнем и канавкой.
Установка
AERCON Установка перемычки и несущей стеновой панели
AERCON Floor Panel Installation
AERCON Block Installation
AERCON Non-load Bearing Vertical Wall Panel Installation
AERCON Shaft Wall Installation
AERCON Roof Panel Installation
Properties of AERCON Products
Energy Efficiency
An 8- дюймовая стена AERCON превосходит обычную конструкцию из деревянного каркаса и бетонной кладки по энергоэффективности (эквивалентное значение R). Эта исключительная энергоэффективность достигается за счет очень низкой теплопроводности (значение U) и теплового эффекта массы. Это явное преимущество конструкции из газобетона AERCON по сравнению с другими традиционными строительными системами, такими как конструкция с деревянным каркасом и бетонной кладкой 9.0003
Для сравнения наружной стены AERCON с традиционными методами возведения стен с деревянным каркасом и бетонной кладкой Центр солнечной энергии Флориды определил эквивалентные значения R для 8-дюймовой стены AERCON. Данные о погоде для Орландо, Флорида, разработанные в базе данных Типового метеорологического года (TMY 1981), послужили основой для внешних условий. Например, в обычный летний день 8-дюймовая стена AERCON ведет себя как стена с деревянным каркасом, изолированная стекловолоконной изоляцией R-20.4, или 8-дюймовая блочная стена CMU, изолированная жесткой изоляцией R-8.6.
Огнестойкость
AERCON негорюч. Так что в случае пожара не выделяются токсичные газы или пары.
Прочная конструкция AERCON без каких-либо дополнительных отделочных материалов обеспечивает предел огнестойкости 4 часа для блочной стены толщиной 4 дюйма или панельной стены толщиной 6 дюймов согласно испытаниям UL. Этот исключительный рейтинг соответствует даже самым строгим требованиям типичных строительных норм и правил. Дополнительные противопожарные блочные, панельные, проходные и соединительные системы описаны в разделе «Огнестойкость».
Звукоизоляция
AERCON, пористый бетонный материал, обеспечивает звукоизоляцию на 7 дБ больше, чем другие строительные материалы того же веса на единицу площади поверхности. Высокая поверхностная масса AERCON в сочетании с гашением энергии механических колебаний в его пористой структуре дает строительный материал с исключительными звукоизоляционными свойствами.
В следующих примерах показан рейтинг STC(1) для типовой конструкции стен AERCON:
- Массивные стены AERCON, включая финишную штукатурку с обеих сторон:
Толщина стенки 4 дюйма —STC—36
Толщина стенки 8 дюймов —STC—44
1) 1) STC = класс звукопередачи
Раздел дизайна.
Классы прочности автоклавного газобетона
Класс прочности
В ASTM C 169 предусмотрено 3 класса прочности для газобетонных блоков. Классы прочности 1 и 3 предназначены для армированных элементов из газобетона в ASTM C 1694. Поскольку физические требования к газобетону, указанные в каждой спецификации, одинаковы, AERCON использует сокращенные обозначения для обозначений ASTM, как показано в таблице ниже. Одно и то же обозначение AERCON используется для блочных изделий и для армированных элементов.
В таблице «Линейка продуктов» на странице II-4 этого раздела указаны классы прочности, доступные для каждого продукта AERCON. Когда для соединения панелей облицовки с надстройкой используются анкеры стеновой плиты, класс прочности для этих панелей может быть определен как AC3.3 или AC4.4 в зависимости от требуемой способности соединения. Анкеры для настенных плит, как показано в разделе «Сведения о конструкции», имеют опубликованную мощность, основанную на этих двух классах прочности
Размеры
Номинальные размеры толщины изделий указаны в различных разделах данного руководства. В таблице ниже показаны изготовленные размеры, связанные с номинальными размерами.
Стандарты и разрешения
ASTM C 426 «Стандартный метод испытаний на усадку бетонных блоков при высыхании» При проектировании и строительстве здания необходимо учитывать нормальную усадку конструкции при высыхании, поскольку материалы стабилизируются до их конечного состояния окружающей среды. условия. Если эту типичную усадку при высыхании не компенсировать должным образом, в ограниченных местах вокруг ограждающей конструкции может возникнуть растрескивание.
Этот метод испытаний представляет собой стандартизированную процедуру для определения усадки при высыхании каменной кладки при сушке в определенных ускоренных условиях. Образцы для испытаний сначала погружают в воду, затем сушат на воздухе, а затем сушат в печи. На каждом этапе измеряется длина. Приведены формулы для расчета усадки при высыхании.
ASTM C 1386
ASTM C 1386 «Стандартные технические условия для стеновых строительных блоков из сборного автоклавного ячеистого бетона (PAAC)» В этой спецификации рассматриваются различные аспекты блоков из автоклавного ячеистого бетона, включая физические характеристики, такие как прочность на сжатие, допуски на размеры, усадку при высыхании и насыпная плотность, а также качество сырья, используемого для производства ион. Кроме того, в этой спецификации определяются классы прочности с соответствующими числовыми значениями прочности на сжатие и плотности. Также описаны подробные процедуры испытаний для определения прочности на сжатие, объемной плотности в сухом состоянии, содержания влаги и усадки при высыхании.
ASTM C 1452
ASTM C 1452 «Стандартные технические условия для армированных элементов из ячеистого бетона автоклавного твердения» Армированные элементы состоят из стальных арматурных стержней, сваренных в маты и покрытых ячеистым бетоном автоклавного твердения. Расчет этих элементов для ожидаемых условий нагрузки требует обеспечения физических свойств каждого компонента, из которого состоит армированный элемент. Характеристики армированного элемента зависят от прочности газобетона, прочности арматурных стержней и прочности сварных швов, скрепляющих стержни вместе. Защита арматурных стержней от износа является критически важной характеристикой, обеспечивающей долговременную целостность конструкции.
Этот стандарт ссылается на соответствующие разделы ASTM C 1386, а также содержит дополнительные требования к армированию. Физические характеристики прочности на сжатие газобетона, объемной плотности и усадки при высыхании определяются на основе процедур испытаний, описанных в ASTM C 1386. В этом стандарте определены требования к сырью, прочности стали, прочности сварного шва и защите от коррозии. Также включены процедуры испытаний для определения этих характеристик, а также характеристик при воздействии изгибающей нагрузки.
ASTM E 72
ASTM E 72 «Стандартные методы испытаний панелей для строительных конструкций на прочность» используемые при построении должны быть известны.
Этот метод испытаний представляет собой стандартизированную процедуру определения прочности на изгиб посредством приложения равномерного давления ко всей поверхности испытательной стены, моделируя давление ветра на реальную конструкцию. Для определения предела прочности при изгибе перпендикулярно стыкам стенового ложа между испытуемым образцом и реактивной рамой помещают большой воздушный мешок. Давление воздуха внутри мешка увеличивают до тех пор, пока не произойдет разрушение образца. Характер разрушения каждого образца отмечается, а предел прочности при растяжении при изгибе соответствует стандарту. рассчитываются отклонение и коэффициент вариации.
ASTM E 90
ASTM E 90 «Лабораторные измерения потерь при передаче воздушного звука в перегородках зданий» Для стен, полов и других строительных конструкций способность уменьшать звук от одной стороны сборки к другой важна с точки зрения комфорта жителей любого здания, будь то односемейная резиденция или многоэтажное офисное здание.
Этот метод испытаний обеспечивает стандартизированную процедуру измерения потерь при передаче звука в децибелах (дБ) в диапазоне частот от 125 до 4000 герц. Чтобы определить его акустическую эффективность, строительный комплекс строится между помещением источника звука и помещением приема. Звуковое поле создается и измеряется в комнате-источнике, а также измеряется звуковое поле в комнате-приемнике. Уровни звукового давления в двух комнатах, звукопоглощение в приемной комнате и площадь образца используются для расчета потерь при передаче в ряде частотных диапазонов. Из этой информации можно рассчитать значение класса передачи звука.
ASTM E 447
ASTM E 447 «Прочность каменной кладки на сжатие» Для того, чтобы правильно спроектировать конструкцию здания, способную противостоять гравитационным нагрузкам, необходимо точно знать прочность на сжатие основных конструктивных элементов, используемых в его конструкции.
Этот метод испытаний представляет собой стандартизированную процедуру определения прочности каменной кладки на сжатие путем приложения сжимающей нагрузки к призме, состоящей из блоков каменной кладки. Сжимающая нагрузка прикладывается к призме с помощью сферического опорного блока из закаленного металла над образцом и опорного блока из закаленного металла под образцом. Это обеспечивает равномерное приложение концентрической нагрузки по всей площади призмы. Результаты испытаний обеспечивают инженерно-конструкторское свойство, известное как минимальная прочность каменной кладки на сжатие, которая для продуктов AERCON равна f’AAC. Минимальная прочность каменной кладки на сжатие затем используется для определения допустимого осевого напряжения, допустимого сжимающего напряжения изгиба и способности сопротивления моменту, ограниченной сжатием в сборках AERCON.
ASTM E 514
ASTM E 514 «Стандартный метод испытаний на проникновение и утечку воды через каменную кладку» Здания должны хорошо работать в суровых погодных условиях, включая частые сильные грозы, сопровождаемые сильным ветром. Стеновые системы, используемые в типичном строительстве зданий, должны предотвращать попадание дождя внутрь оболочки здания. Этот метод испытаний представляет собой стандартизированную процедуру определения количества воды, которое полностью проникает в стеновую сборку. Количество проходящей воды получают, подвергая весь стеновой узел воздействию воды со скоростью 3,4 галлона/фут2 в час при давлении воздуха 10 фунтов/фут2 в течение не менее 4 часов. Это эквивалентно скорости ветра 62 мили в час и 51/2 дюйма дождя в час. Любая вода, которая проникает в сборку, собирается, измеряется и регистрируется.
ASTM E 518
ASTM E 518 «Стандартные методы испытаний на прочность соединения кирпичной кладки при изгибе». В этом стандарте описаны два метода испытаний, которые обеспечивают стандартизированные процедуры для определения прочности на изгиб неармированных каменных конструкций. В обоих методах испытаний используется призма, состоящая из нескольких блоков каменной кладки. Призму испытывают как свободно опертую балку, равномерно нагруженную воздушной подушкой в одном методе и нагруженную третьей точкой в другом. Нагрузку увеличивают до тех пор, пока не произойдет разрушение образца. Затем разрушающая нагрузка используется для расчета общего модуля прочности на разрыв.
ASTM E 519
ASTM E 519 «Стандартные методы испытаний на диагональное растяжение (сдвиг) в каменных конструкциях». конструктивные элементы, используемые в конструкции стены жесткости, должны быть точно известны. Этот метод испытаний представляет собой стандартизированную процедуру определения прочности на диагональное растяжение (сдвиг) каменной кладки. Размер образца позволяет разумно оценить прочность на сдвиг, которая была бы репрезентативной для полноразмерной каменной стены, используемой в фактическом строительстве. Каждый образец построен из блоков в виде бегущей схемы скрепления. Прямоугольный образец поворачивают на 45 градусов, когда его помещают в испытательную машину, так что его диагональная ось ориентирована вертикально. Затем образец подвергается сжатию вдоль этой вертикальной диагональной оси. Это приводит к разрушению из-за диагонального растяжения, когда образец раскалывается в направлении, параллельном приложению нагрузки. Отмечается характер разрушения каждого образца и рассчитываются средняя прочность на сдвиг, стандартное отклонение и коэффициент вариации.
ANSI / UL 263
ANSI / UL 263 (аналог ASTM E 119) «Стандартные методы испытаний строительных конструкций и материалов на огнестойкость» Характеристики крыш, полов и стен при воздействии огня важны для безопасности и защиты лиц, проживающих в здании, их имущества и содержимого здания.
Этот метод испытаний представляет собой стандартизированную процедуру определения огнестойкости крыш и перекрытий с фиксаторами; предел огнестойкости безнапорных крыш и перекрытий; предел огнестойкости несущих стен; и предел огнестойкости ненесущих стен при стандартном огневом воздействии. Там, где это применимо, используется наложенная нагрузка для имитации максимальной расчетной нагрузки для сборки. Этот метод испытаний обеспечивает относительную меру способности сборки предотвращать распространение огня, сохраняя при этом свою структурную целостность.
Чтобы определить предел огнестойкости, сборка строится и подвергается стандартному огню в течение заданного времени. После того, как сборка подверглась стандартному огневому воздействию, на нее воздействуют стандартной пожарной струей воды, предназначенной для имитации воздействия пожаротушения. Сборка считается выдержавшей часть испытания на воздействие огня, если температура на не подвергаемой воздействию поверхности остается ниже определенного значения, что позволяет измерить ее теплопередачу. Сборка считается выдержавшей часть испытания с потоком из шланга, если вода не просачивается на незащищенную поверхность. Сборка должна успешно пройти обе части испытания, чтобы достичь своей огнестойкости. Класс огнестойкости присваивается на основе количества времени, в течение которого сборка подвергалась воздействию стандарта. огонь, обычно определяемый как рейтинг 1, 2, 3 или 4 часа.
ANSI / UL 2079
ANSI / UL 2079 «Испытания на огнестойкость систем соединения зданий» При проектировании зданий существуют условия, при которых желательно или требуется физическое разделение между соседними огнестойкими элементами, например, внутренняя стена, примыкающая перпендикулярно к наружной стене. Зазор между этими стенками обеспечивает независимое перемещение и допуск конструкции. Если это противопожарные стены, любой зазор или стык между этими элементами также должны быть огнестойкими. Этот метод испытаний представляет собой стандартизированную процедуру определения класса огнестойкости соединительных систем, используемых для герметизации любых непрерывных отверстий между огнестойкими элементами. Для определения предела огнестойкости строится сборка, содержащая соединительную систему. После того, как сборка построена, она циклически повторяется, чтобы имитировать движение, которое может произойти в завершенной установке. Затем он подвергается стандартному огню в течение заданного времени. После того, как сборка подверглась стандартному огневому воздействию, на нее воздействует стандартная пожарная струя воды, предназначенная для имитации последствий пожаротушения. Сборка считается выдержавшей часть испытания на воздействие огня, если температура на не подвергаемой воздействию поверхности остается ниже определенного значения, что позволяет измерить ее теплопередачу. Сборка считается выдержавшей часть испытания с потоком из шланга, если вода не просачивается на незащищенную поверхность. Сборка должна успешно пройти обе части испытания, чтобы достичь своей огнестойкости. Класс огнестойкости присваивается на основе количества времени, в течение которого сборка подвергалась воздействию стандарта. огонь, обычно определяемый как рейтинг 1, 2, 3 или 4 часа.
Экология
Ингредиенты – использование природных ресурсов
AERCON – это строительный материал на минеральной основе, изготовленный из песка, воды и известняка. Эти природные материалы являются основными компонентами земной коры и могут быть найдены практически в неограниченных количествах по всему миру. Поскольку источники сырья практически неисчерпаемы, у окружающей среды не отнимаются невосполнимые ресурсы.
Это сырье перерабатывается для получения строительного материала с большим количеством воздушных пор — газобетона. Благодаря нашему уникальному процессу гидратации, порционная смесь
сырья «поднимается». Таким образом, из одной единицы объема сырья получится пять единиц объема AERCON.
Экологически безопасный производственный процесс
По химическому составу AERCON представляет собой гидрат силиката кальция, образующийся при отверждении смеси сырьевых материалов. Это эквивалент минерала «тоберморит», встречающегося в природе. Набухающий агент действует как порообразующий агент. После застывания поднявшуюся массу разрезают на нужные размеры, а затем отверждают паром под давлением в автоклаве. В процессе производства не происходит выброса токсичных или опасных для окружающей среды побочных продуктов. В процессе обрезки обрезки возвращаются в исходную смесь, что исключает потери сырья
Экономия энергии в процессе отверждения, когда горячий пар, используемый в автоклавах, используется повторно. Этот технически продвинутый процесс сохраняет драгоценные энергетические ресурсы.
Метод производства паровой сушки помогает экономить энергию, поскольку паровая сушка осуществляется при относительно низких температурах, а тепловая энергия рекуперируется для максимальной эффективности.
Энергосберегающий способ строительства
Легкие свойства автоклавных газобетонных изделий AERCON также очень благоприятны для окружающей среды.
Потребление энергии и затраты на доставку продуктов AERCON на строительную площадку снижаются благодаря легкому весу AERCON. Рабочая сила и оборудование, необходимые для установки строительных систем AERCON, могут быть эффективно использованы на всех этапах строительства. Легкость, с которой материал режется, формуется и укладывается, обеспечивает легкую установку с меньшим потреблением физической энергии и меньшим количеством машин, работающих на топливе.
Высокие изоляционные свойства AERCON, которые превосходят большинство других строительных продуктов, также обеспечивают постоянную экономию энергии для владельца здания за счет повышения тепловой эффективности здания. Поскольку использование этого материала также может позволить владельцу воспользоваться преимуществом «непикового» использования энергии, владелец может увидеть дополнительную экономию, а энергокомпания может добиться снижения спроса на «пиковую» энергию.
Как вы можете видеть на изображении, стеновые панели AERCON были выбраны для строительства нескольких зданий коммуникационного оборудования, чтобы снизить их эксплуатационные расходы за счет экономии энергии.