Толщина стен в жилом доме: Минимальная толщина стены из кирпича или блоков

Содержание

О минимальной толщине несущих кирпичных стен

В.В. Габрусенко

Нормы проектирования (СНиП II-22-81) разрешают принимать минимальную толщину несущих каменных стен для кладки I группы в пределах от 1/20 до 1/25 высоты этажа. При высоте этажа до 5 м в эти ограничения вполне вписывается кирпичная стена толщиной всего 250 мм (1 кирпич), чем и пользуются проектировщики — особенно часто в последнее время.

С точки зрения формальных требований, проектировщики действуют на вполне законном основании и энергично сопротивляются, когда кто-то пытается их намерениям препятствовать.

Между тем тонкие стены наиболее сильно реагируют на всевозможные отклонения от проектных характеристик. Причем даже на такие, которые официально допустимы Нормами правил производства и приемки работ (СНиП 3.03.01-87). В их числе: отклонения стен по смещению осей (10 мм), по толщине (15 мм), по отклонению на один этаж от вертикали (10 мм), по смещению опор плит перекрытия в плане (6…8 мм) и пр.

К чему приводят эти отклонения, рассмотрим на примере внутренней стены высотой 3,5 м и толщиной 250 мм из кирпича марки 100 на растворе марки 75, несущей расчетную нагрузку от перекрытия 10 кПа (плиты пролетом по 6 м с обеих сторон) и веса вышележащих стен. Стена рассчитана на центральное сжатие. Её расчетная несущая способность, определенная по СНиП II-22-81, составляет 309 кН/м.

Допустим, что нижняя стена смещена от оси на 10 мм влево, а верхняя стена — на 10 мм вправо (рисунок). Кроме того, на 6 мм вправо от оси смещены плиты перекрытия. То есть, нагрузка от перекрытия N1 = 60 кН/м приложена с эксцентриситетом 16 мм, а нагрузка от вышележащей стены N2 — с эксцентриситетом 20 мм, тогда эксцентриситет равнодействующей составит 19 мм. При таком эксцентриситете несущая способность стены снизится до 264 кН/м, т.е. на 15%. И это — при наличии всего двух отклонений и при условии, что отклонения не превышают допустимые Нормами значения.

Схема действия усилий на стену при допустимых отклонениях

Если добавить сюда несимметричное нагружение перекрытий временной нагрузкой (справа больше, чем слева) и «допуски», которые позволяют себе строители, — утолщение горизонтальных швов, традиционно плохое заполнение вертикальных швов, некачественная перевязка, искривление или наклон поверхности, «подмолаживание» раствора, чрезмерное использование половняка и т. д. и т. п., — то несущая способность может снизиться еще не менее чем на 20…30%. В итоге перегрузка стены превысит величину 50…60%, за которой начинается необратимый процесс разрушения. Процесс этот проявляется не всегда сразу, бывает — спустя годы после завершения строительства. Причем надо иметь в виду, что чем меньше сечение (толщина) элементов, тем сильнее отрицательное влияние перегрузок, поскольку с уменьшением толщины уменьшается возможность перераспределения напряжений в пределах сечения за счет пластических деформаций кладки.

Если добавить ещё неравномерные деформации оснований (вследствие замачивания грунтов), чреватые поворотом подошвы фундамента, «зависанием» наружных стен на внутренних несущих стенах, образованием трещин и снижением устойчивости, то речь уже пойдет не просто о перегрузке, а о внезапном обрушении.

Сторонники тонких стен могут возразить, что для всего этого нужно слишком большое сочетание дефектов и неблагоприятных отклонений. Ответим им: подавляющее большинство аварий и катастроф в строительстве происходит именно тогда, когда в одном месте и в одно время собирается несколько негативных факторов — в этом случае «слишком много» их не бывает.

Выводы

  1. Толщина несущих стен должна составлять не менее 1,5 кирпичей (380 мм). Стены толщиной в 1 кирпич (250 мм) допускается применять только для одноэтажных или для последних этажей многоэтажных зданий.

  2. Это требование следует внести в будущие Территориальные нормы проектирования строительных конструкций и зданий, необходимость в разработке которых давно назрела. Пока же можно только порекомендовать проектировщикам избегать применения несущих стен толщиной менее 1,5 кирпичей.

какая должна быть для зимнего дома

Кирпичная кладка

Создание уютной атмосферы в доме немыслимо без поддержания во внутренних помещениях комфортной для проживания температуры. Чем лучше термосопротивление наружных стен, тем более удобный для человека микроклимат будет поддерживаться в жилых комнатах на протяжении всего года. Данный показатель во многом зависит от толщины стен здания и их способности противостоять перепадам внешних температур. В связи с этим, чтобы построить комфортное жильё, следует учитывать нормативы СНиП, в которых указана минимально допустимая толщина стены из кирпича, дерева и иных материалов.

Особенности материала

Кирпич является одним из самых технологичных строительных материалов. Благодаря своим отличным эксплуатационно-техническим качествам, он издавна применяется человеком для возведения как небольших одноэтажных построек, так и при строительстве массивных многоэтажных сооружений.

Строительный кирпич с успехом выдерживает нагрузки, в тысячи раз превышающие его собственный вес, а при соблюдении всех технологий кладки, несущие стены кирпичного дома могут без проблем прослужить не один десяток и даже сотен лет. Между тем, долговечность службы зависят от таких технических показателей материала, как коэффициент прочности и морозостойкости.

Показатель морозостойкости материала даёт представление о возможности несущей стены из кирпича противостоять циклам заморозки / оттаивания при смене времён года. Коэффициент морозостойкости непосредственно оказывает влияние на сроки «безаварийной» эксплуатации и зависит от плотности и пористости материала. Чем более высокий коэффициент влагопоглощения, тем ниже устойчивость кирпичных стен к сезонным перепадам температур. Согласно требованиям ГОСТ, минимальная цикличность стройматериала не должна быть ниже 20 – 25 сезонов.

Виды строительного кирпича

Коэффициент прочности вычисляется в зависимости от того, какую нагрузку может выдержать материал без разрушения и деформации. Маркировка производится с шагом в 25-50 единиц и может составлять от М-75 до М-200. Каждая из данных разновидностей имеет свою область использования.

Чем выше этажность здания или предполагаемая нагрузка перекрытий, тем больше должна быть толщина кирпичной кладки. Если для малоэтажной частной застройки вполне подойдёт кирпич марки М-75 и М-100, то для возведения многоэтажек, цоколей и прочих конструкций с высокими эксплуатационными нагрузками следует брать кирпич с маркой прочности не ниже М-150, независимо от того, какова толщина кладки.

Типоразмеры кладочного материала

Среди недостатков кирпичной кладки следует указать высокую гигроскопичность. Обожжённая глина, служащая основным сырьём для этого строительного материала, способна легко впитывать из атмосферы и удерживать внутри себя воду. Содержащаяся в микропорах и трещинах сырость постепенно приводит к разрушению кирпича, потере им своих прочностных качеств. В связи с этим, наружная кладка должна быть по возможности защищена от воздействия осадков гидроизоляцией или влагоотталкивающими грунтовочными составами.

Другой минус кирпича, как материала – его высокая теплопроводность. Благодаря этому, кирпич уже сам по себе является отличным «мостиком холода», способствующим проникновению внутрь здания мороза извне. Раньше с этим отрицательным свойством боролись, увеличивая толщину несущей кирпичной стены.

В советское время при относительной дешевизне кирпича и недостатке эффективных утеплителей – это был наиболее простой выход из положения. Ещё несколько десятилетий назад толщина стен дома из кирпича в центральных районах страны могла составлять 64 см, а в северных регионах – 1 м и более. Однако сейчас, когда на строительном рынке имеется огромный выбор строительной теплоизоляции, такая толщина кирпичной стены становится ненужным расточительством.

Все проблемы с недостаточной теплоизоляцией здания можно решить с помощью любого подходящего для этих целей утеплителя.

Факторы расчёта толщины стен

Расчёт толщины кирпичных стен зависит от ряда аспектов, главных из которых два:

  • Несущие показатели.
  • Теплоизоляционные показатели.

В первом случае от ширины кирпичных стен зависят её несущие способности. Это актуально для несущей опорной конструкции, в то время как внутренние межкомнатные перегородки могут выкладываться «в кирпич» или «в полкирпича» – шириной в 12 или 25 см. В данном случае толщина внутренних стен вполне достаточна, чтобы создать прочную перегородку. Она способную противостоять механическим нагрузкам и выдерживать подвесные конструкции – полки, шкафы, дверные коробки и т.д.

Толщина наружной стены из кирпича в отличии от перегородочной должна быть такой, чтобы выдерживать более значительные нагрузки. На несущие стены дома ложится вес межэтажных перекрытий, вышерасположенных этажей и кровли, поэтому от её ширины зависит прочность всей постройки.

От теплоизоляционных характеристик материала также во многом зависит толщина несущих стен. Чем более высокая теплопроводность у стройматериала, тем больше должна быть минимальная толщина стеновой конструкции.

Виды кирпичной кладки

В современном строительстве применяется несколько видов кирпичной кладки, различающиеся по своей ширине. Стандартная толщина стен здания может составлять от 1 до 2-х и более кирпичей. В данном случае под понятием «в кирпич» понимается длина кирпича, составляющая 25 см. Типоразмер «одинарного» кирпича закреплён в положениях ГОСТ и составляет:

  • Длина – 25 см (кладка «в кирпич»).
  • Ширина – 12 см. (кладка «в полкирпича»)
  • Высота – 6,5 см.

Ширина кирпичной кладки

С точки зрения экономической целесообразности при мало- и среднеэтажном строительстве наиболее эффективной является толщина наружных стен в 38 – 51 см – толщиной в два или в полтора кирпича. Такой тип кладки способен легко выдержать вес двух-трёх вышерасположенных этажей, а также нагрузку от кровли. При этом масса конструкции остаётся сравнительно небольшой, так что застройщику не придётся дополнительно усиливать фундаментное основание дома. Другой плюс подобной кладки состоит в том, что такой тип кладки позволяет значительно сэкономить на строительном материале.

Стены большей толщины, чем в 2 кирпича, в современном строительстве практически не используются. Связано это с тем, что, во-первых, их несущие способности явно избыточны – с необходимой нагрузкой вполне справляется и стена в 2 кирпича.

Увеличенные размеры кладки ведут лишь к неоправданно завышенным сметным расходам на стройматериал, без какой-либо выгоды с точки зрения прочности здания. Во-вторых, улучшить теплоизоляцию здания гораздо эффективнее благодаря применению утеплителей, нежели за счёт увеличения толщины несущих стен из кирпича. Более тонкие стены для опорных конструкций, согласно нормативам СНиП, применять не рекомендуется. Так, несущая стена в полкирпича не сможет обеспечить достаточной прочности здания и долговечности его эксплуатации.

Для внутренних перегородок чаще всего используют кладку в полкирпича (12 см). Это наиболее оптимальный вариант, как с точки зрения финансовой составляющей, так и с учётом прочностных характеристик конструкции. Гораздо реже применяется кладка в кирпич (25 см) и в 6,5 см, когда кирпичи ставятся на ребро.

Однако подобные конструкции имеют больше недостатков, чем достоинств: в первом варианте это увеличенная вдвое стоимость простенков, а во втором – недостаточная прочность простенка.

Расчёт кирпича в кладке

Перед тем как решить, какой толщины будут стены будущей постройки, необходимо произвести ряд инженерных расчётов. Прежде всего, следует вычислить общее количество кирпича, которое понадобится для возведения несущих и перегородочных конструкций. Это необходимо будет сделать по двум причинам:

  • Оптимизировать сметные расходы.
  • Вычислить нагрузку на несущее основание.

Первым шагом следует рассчитать площадь всех стен, отдельно внешних и внутренних, и из полученного числа вычесть площадь оконных и дверных проёмов. Далее необходимо высчитать, сколько кирпича содержится в кв.м кладки той или иной толщины. Зависит это количество от типа материала. Сегодня в кирпичном строительстве используется три основных типоразмера:

  • Стандартный: 25 х 12 х 6,5 см.
  • Полуторный: 25 х 12 х 8,8 см.
  • Двойной: 25 х 12 х 13,8 см.

В таблице приводятся расходы разных видов кирпича для кладки различной толщины.

Сравнение показателя теплопроводности кирпича и дерева

Используя приведённую таблицу, можно не только вычислить необходимое для строительства количество материала, но также рассчитать нагрузку, которую будет оказывать постройка на фундамент. Зная же массу здания и пользуясь сводными таблицами СНиП, возможно рассчитать минимально допустимое значение прочности фундаментного основания.

Теплоизоляционные показатели

Коэффициент теплозащиты является одним из ключевых при проектировании толщины стен. Ещё не так давно толщина несущих стен из кирпича оказывалась решающим фактором для создания эффективного теплоизоляционного пояса. В связи с этим, нередко использовались кладки толщиной в 3-4 и более кирпичей. Но из-за высоких показателей теплопроводности создание надёжной защиты от морозов при помощи кирпичной кладки приводили к неоправданному возрастанию стоимости строительства.

Показатели теплопроводности и плотности кирпича в сравнении с другими строительными материалами.

Сегодня на смену этому архаичному способу пришли более эффективные технологии, использующие в качестве теплозащиты современные теплоизоляционные материалы.

В результате создание кладки толщиной более 2 кирпичей в современном строительстве признано неэффективной. Чтобы рассчитать необходимую минимальную толщину внешних стен постройки, используют следующую формулу:

 

Зная показатель теплопроводности того или иного материала, можно легко вычислить минимальный необходимую толщину стены с учётом теплоизолирующего слоя. Показатель необходимого теплового сопротивления для каждого региона приводится в таблицах раздела СНиП «Строительная климатология».

На представленном ниже видео показаны особенности кирпичной кладки.

Пользуясь таблицами и рекомендациями СНиП, можно самостоятельно вычислить, какая должна быть толщина стен дома различной конструкции для разных регионов страны.

Как определить несущие стены в жилом доме

Вступление

Здравствуйте. В прошлых статьях я описывал особенности скрытой электропроводки в многоквартирных жилых домах, а именно, разговор шел о штроблении стен. Можно подвести краткий итог этих статей: не рекомендовано дробление несущих стен многоквартирных домов. Возникает простой и логичный вопрос, как определить, какие стены являются несущими, а какие нет? Это особенно важно при покупке новой квартиры. Разрушение несущих стен может стать неприятным сюрпризом при переезде в новую квартиру.

Большое значение при переезде с места на место является выбор транспортной компании. Особое значение выбор компании приобретает при переезде из другой страны, например в Россию. Здесь к хлопотам с переездом добавляется оформление документов, беспокойство о пересечении грузом границы и т.д. Выбор транспортной компании с большим опытом практической работы, акцентирующей услуги по переезду в Россию будет отличным вариантом беспроблемного переезда. Пример такой компании, компания ТОО GTrans. Отработанный переезд в Россию из Казахстана по наезженным маршрутам.

Зачем определить несущие стены в квартире (офисе)

Ответы на вопросы «Зачем определять несущие стены» или «Какая стена, несущая» вообще не имеют никакого значения, если вы не планируете серьезный ремонт, связанный с перепланировкой и/или прокладкой новой скрытой электропроводки. Как перепланировка, так и электромонтаж связан с затрагиванием конструкций помещения и согласно Жилищному кодексу РФ, требует согласований и получения разрешений, если эти конструкции являются несущими.

Юридически, вопрос максимально понятен. Нарушение несущих конструкций дома (здания) может нарушить его прочность и привести к его разрушению (частичному или полному).

На практике, некоторые строительные фирмы, без опасок, рушат и долбят стены, увещая заказчиков, что «мы делаем это постоянно». Это совсем не аргумент, ведь ответственность за незаконную перепланировку и разрушение конструкций лежит на собственнике жилья.

Как самостоятельно определить несущие стены

Есть несколько практических советов, как определить несущая стена или нет.

Жилой дом из кирпича

Толщина несущих стен в кирпичном доме начинается с 38 см. Все другие стены, 12 см (один кирпич), 25 см (два кирпича), 8-12 см (легкий бетон), являются перегородками.

Определить несущие стены в хрущевках и сталинках

Конструкция домов типа «сталинка» и «хрущевка» продемонстрирована на фото.

Видим:

  • 3 продольные стены они несущие;
  • Между ними несущие диафрагмы, они удерживают несущие стены от падения;
  • Лестничные пролеты удерживаются на несущих стенах.

Все остальные стены это перегородки.

Как определить несущие стены в доме : Хрущевка

На плане квартиры это будет выглядеть так.

План квартиры

Серийный многоквартирный дом из панелей

Измеряем толщину стены.

В серийных панельных домах толщина несущих стен составляет 12, 14, 18, 20 см. Толщина перегородок в панельных домах, то есть стен, возводимых после постройки (сборки) дома, колеблются в пределах 8-10 см.

Вывод 1. Если толщина стены (без штукатурного слоя) меньше 10 см, очень велика вероятность, что это не несущая стена, а перегородка.

Важно! Конструкция панельного дома держится за счет несущих стен, и разрушение несущей стены нарушает целостность конструкции всего дома.

О штроблении стен в панельном доме, я достаточно подробно написал в статье: Штробление панельных домах: особенности электропроводки в панельном доме

Узнать серию своего дома и посмотреть архитектурную планировку

Панельные многоквартирные дома серийные и каждый дом принадлежит определенной серии. В Интернет можно найти довольно полные сайты с описанием и фото серийных панельных домов. По серии дома, вы легко найдете авторов проекта и проект вашего дома. На проекте дома (квартиры) четко видны несущие стены (они заштрихованы и\или толще остальных). Альтернативой проекту, может стать общение с БТИ или с управляющей компанией вашего дома.

Определить несущие стены в многоквартирном монолитном доме

В новостройках монолит, определить несущие стены просто. Несущие стены видны визуально.  Ровная бетонная стена, несущая, перегородка выложена из блоков.

В обжитых монолитных домах, несколько сложнее. Перегородкой точно является стена толщиной меньше 20 см. Однако, стена толще 20 см может быть как перегородкой, так и несущей конструкцией.  В этом случае поможет, определить несущая стена или нет, только архитектурный раздел рабочего проекта. Он должен быть у управляющей компании. Несущие стены будут заштрихованы.

О штроблении стен в монолитном доме, я подробно написал в статье: Проводка в монолитных домах: особенности электропроводки монолитного дома

Какие работы для несущих стен запрещены

В завершении несколько нельзя для несущих стен:

  • Нельзя,  полностью сносить несущую стену в любых зданиях (Постановления Прав-ва Москвы 508) и невозможно получить законное согласование на такой снос.
  • Переносить несущую стену;
  • делать проём в несущей стене без согласования и проекта;
  • Нельзя, (в Москве) делать любые борозды для электропроводки, а также труб водопровода и отопления. (ППМ №508)
  • Можно! Сверлить несущие стены для навешивания предметов мебели и приборов, а также можно делать сквозные отверстия в несущих стенах для прохождения труб водопровода, закладных электрокабелей, вентиляции.

Вывод

Как видите определить несущие стены в своей квартире, самостоятельно вполне реально.

©Ehto.ru

Еще статьи

Толщина стен для дома из арболитовых блоков

Являясь производителем арболитовых блоков в Беларуси, вставлю свои «пять копеек». Вообще, вопрос толщины стены имеет две стороны: экономическую и законодательную. Формула экономической целесообразности сопротивления теплопередаче (т.е. толщины) имеет много составляющих и увязывает, в том числе, стоимость энергии, стоимость работ по утеплению, стоимость самого утеплителя, продолжительность отопительного периода и т.д. Поэтому можно сделать ограждающую конструкцию и с сопротивлением теплопередаче R=1 м²*°С/Вт (лет 20 назад это было нормой), если есть доступ к дешевой энергии или бесплатному утеплителю. Я когда себе строил дом из арболита (2015 год, Минск, стена 30 см, отопление газовое) посчитал, ради интереса, экономическую целесообразность утепления 50-ю мм базальтовой ваты. На тот момент вышел срок окупаемости 19 лет. Экономического смысла утеплять не было.

Что касательно законодательной стороны, могу судить только о Беларуси, где собственно и проживаю.

Вопрос о толщине стены у нас регламентирует ТКП 45-2.04- 43-2006 «Строительная теплотехника». Согласно ему сопротивление теплопередаче ограждающей конструкции для нашего региона Rт= 3,2 м²*°С/Вт. Но!

Допускается снижать приведенное сопротивление теплопередаче наружных стен до 0,8 Rт при одновременном выполнении условий:

— достижения зданием нормативного значения удельного расхода тепловой энергии на отопление и вентиляцию, определяемого в соответствии с ТКП 45-2.04- 196;

— использования методики расчета приведенного сопротивления теплопередаче ограждающих конструкций, представленной в отдельном документе «Рекомендации по расчету приведенного сопротивления теплопередаче ограждающих конструкций и расчету потерь теплоты помещений через ограждения», а также других методик, удовлетворяющих требованиям, указанным в 5.11, перечисление г )».

Переводя на нормальный язык это:

— удельный расход тепловой энергии на отопление и вентиляцию в отопительный период, для здания от 1 до 3-х этажей, должен быть менее 91 кВт*ч/м²;

— считать надо правильно (т.е. только по утвержденным методикам).

Применительно к арболиту получаем следующее.
По нашему стандарту 1105-98 «Блоки стеновые из арболита для малоэтажного строительства» плотность арболитового блока для несущей стены должна быть не менее 650 кг/м³. При такой плотности мы имеет коэффициент теплопроводности λ= 0,12 Вт/(м*°С) (по результатам испытаний).

Таким образом, минимальная толщина стены для Беларуси должна иметь сопротивление теплопередачи

Rmin= 0.8*3.2=2.56 м²*°С/Вт.

Переведя это в метры, учитывая коэффициенты теплоотдачи поверхности стен, получим 0,288 метра. Это толщина «голой» стены, без учета теплосопротивления отделочных материалов. Если учитывать минимальную отделку, то получим 0,27 метра. Поэтому я всем своим клиентам рекомендую класть стену толщиной 30 см, а учитывая, что основные теплопотери происходят через кровлю и окна, уделить именно им больше внимания.

Стены какой толщины лучше выбрать для постоянного проживания в доме из пеноблоков?

Стены какой толщины лучше выбрать для постоянного проживания в доме из пеноблоков?

Чем толще стены, тем меньше потери тепла. Но экономия тепла достигается ценой увеличения стоимости строительства. В этой статье мы обсудим вопросы, связанные с разумным выбором толщины стен из газосиликатных и пенобетонных блоков в доме, предназначенном для постоянного проживания.

Толщины стен в 300 мм достаточно для постоянного проживания


Разумный выбор толщины стен зависит от Ваших критериев: заложенного бюджета строительства, будущих расходов на отопление и уровня комфорта.

Стены из пеноблоков марки 400-500, из которых можно построить загородный коттедж, согласно современным нормам по теплоудержанию должны иметь толщину порядка 400 мм. Эти нормы, действующие с 2000 года, были установлены ради экономии энергии. Однако по прежним нормам, принятым в конце 70-х годов прошлого века, толщины стен из пеноблоков в 300 мм было более чем достаточно. Такие стены не промерзают, и в отапливаемых помещениях тепло в самый лютый мороз на улице.

Таким образом, дома из пеноблоков с толщиной стен 300 мм вполне пригодны для постоянного проживания, но надо иметь в виду, что мощность отопительного котла и расходы на отопление окажутся на 25-30% выше, чем в домах, построенных в соответствии с современными стандартами. Экономия бюджета строительства приводит к росту эксплуатационных расходов.

Стены из пеноблоков толщиной 300 мм в сравнении со стенами из дерева

Для сравнения, пенобетонные и газосиликатные блоки толщиной 300 мм по своей теплопроводности эквивалентны клееному брусу толщиной 240 мм или оцилиндрованному бревну диаметром около 300 мм. Оцилиндрованное бревно диаметром 220-240 мм и клееный брус толщиной 180-200 мм, из которых строится большинство деревянных загородных коттеджей, примерно вдвое не соответствуют современным официальным теплотехническим требованиям. И ничего – в таких домах люди живут без каких-либо заметных неудобств. Их даже порой называют теплыми. А деревянные дома с толщиной стен более 400 мм, которые полагались бы по современным нормам, практически никто не строит.

Толщина стен в 375 мм и выше


Если позволяет бюджет, то, по логике, следует ориентироваться на современные нормы. Ведь расходы на отопление неуклонно растут по мере роста цен на энергоносители, и лучше заранее позаботиться об экономии. В этом случае целесообразно применять для строительства загородных домов газосиликатные блоки толщиной 375 мм и выше.

Почему именно 375 мм? Это – один из стандартных размеров, что связано с технологией производства газосиликатных блоков. На существующих заводах, выпускающих высококачественные блоки, таких как Ytong, затвердевшая в автоклаве газосиликатная масса пилится на блоки такой толщины без остатка. Поэтому цена этих блоков оптимальна.

25 мм толщины, на которые 375-миллиметровые стены не дотягивают до современных требований, означают увеличение потерь тепла сквозь ограждающие стены всего лишь на несколько дополнительных процентов. С учетом того, что есть еще потери через окна, кровлю, пол, вытяжную вентиляцию и т.д., разница оказывается пренебрежимо малой. Поэтому дом из пеноблоков со стенами толщиной 375 мм вполне можно считать теплосберегающим даже по современным требованиям.

Но все же имеет смысл стоить дома из пеноблоков еще большей толщины, скажем, 500 мм. Ведь дом строится на десятилетия. В этом случае мы опережаем время и минимизируем будущие расходы, поскольку цена на энергоносители будет, несомненно, повышаться и далее.

Компания «Загородный дом» проектирует и строит коттеджи из пенобетонных и газосиликатных блоков. Эти коттеджи обладают высокими характеристиками по теплосбережению, а также всеми основными качествами каменных домов: прочностью, основательностью, пожаробезопасностью, красивым и разнообразным внешним видом.

какая оптимальная, минимальная толщина, без утепления.

На строительном рынке присутствует огромное многообразие стеновых материалов. На их фоне выгодно отличается автоклавный газобетон – за счёт низкой теплопроводности, точности параметров, позволяющих вести тонкошовную кладку и экологичности. В первую очередь частные застройщики, которые планируют строительство без проекта (законом это не запрещено), стараются выяснить, какова оптимальная толщина стен из газобетона, если учесть его более низкую, чем у других материалов, прочность. Разберёмся, что по этому поводу говорится в нормативных документах.

На выбор толщины стены влияют не только теплоизоляционные качества материала, но и его прочностные характеристики. При этом каждый заказчик старается оставаться в рамках выделенного на строительство бюджета. С увеличением плотности блоков растёт и их прочность, и цена, но при этом возрастает и коэффициент теплопроводности, что делает стены менее тёплыми. И всё же, прочность на первом месте, ведь дом постоянного проживания – это капитальное строение с минимальным сроком службы 50-70 лет.

В продаже для малоэтажного строительства предлагаются блоки в трёх основных вариантах прочности:

  1. Класса В3,5 – могут применяться для возведения несущих стен в несколько этажей, с нагрузками в виде монолитных перекрытий или навесных фасадов.
  2. Класса В2,5 – можно построить трёхэтажный дом, но только не в сейсмоопасной зоне, и без дополнительных нагрузок.
  3. Класса В2,0 – из него можно строить дома максимум в два этажа, с деревянными перекрытиями.

Если блоки имеют прочность меньше В2, это уже теплоизоляционный материал, а не теплоизоляционно-конструкционный, и использоваться для несущих стен дома не может. Одному и тому же классу прочности могут соответствовать блоки с разной плотностью, что зависит от способа из твердения – гидратационного или синтезного. Если говорить о втором варианте, то прочность изделий может регулироваться за счёт времени выдержки в автоклаве.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Выбирая материал для строительства дома, интересуйтесь в первую очередь классом прочности, а потом уже обращайте внимание на плотность. Например, прочность В3,5 могут иметь, как автоклавные блоки D 600 и 700, так и неавтоклавные D800. То есть, если вы выбираете для строительства блоки гидратационного твердения, их плотность должна быть выше.

Строительство с применением блоков из ячеистых бетонов осуществляется согласно стандарту 501*52-01*2007. Вот его основные требования, касающиеся прочностных характеристик стенового материала:

  1. В зданиях до 5 этажей для несущих стен должны применяться блоки только автоклавные, класса В3,5. Если для их кладки используется раствор, марка должна быть не менее М100.
  2. В зданиях до 3-х этажей следует использовать блоки В2,5, раствор М75.
  3. В одно- двухэтажных зданиях могут применяться блоки В2 на растворе М50.

В нормах, как видите, внимание уделяется только прочности, и ничего не говорится о том, какой должна быть толщина газобетонных блоков. А всё потому, что в каждом случае требуется индивидуальный расчет — без него цифры будут всего лишь приблизительными. Кроме среднезимних температур в расчёте должен учитываться ещё и конструктив стен, который тоже может быть разным. Варианты представлены в этом же нормативном документе, и о них пойдёт речь далее.

Перед тем, как рассчитать толщину стены из газобетона, проектировщики берут во внимание её конструктив. По типу кладки она может быть:

  1. В один блок. В таком случае, ширина блока соответствует толщине стены. Подбор зависит климатических условий строительства. Для юга это обычно 250-300 мм, для средней полосы 375-400 мм. Для северных регионов толщина однослойных стен составляет 500 мм и более.
  2. Толщиной в два блока, которые могут быть как одинаковыми, так и разнотипными. Такие стены проектируют в регионах, где максимальной толщины газоблока (500 мм) недостаточно, чтобы обеспечить надлежащее теплосопротивление ограждающих конструкций.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

На заметку: В таком случае, толщина стены 600 мм может складываться из двух блоков шириной 300 мм. Чтобы получилось 550 мм, толщина газобетонных блоков для наружных стен без утеплителя составляет 300 и 250 мм. Как вариант, стену 600 мм выкладывают из однотипного блока шириной 300 мм с перевязкой ложковых рядов тычковыми.

Газобетонные стены бывают и многослойными — в таком случае их толщина определяется совокупностью толщин всех слоёв. Несущие стены могут быть спроектированы с кирпичным слоем, который может находиться как снаружи, так и с внутренней стороны. В частных домах чаще всего встречается первый вариант, но второй тоже неплох, учитывая, что кирпичная кладка не только прекрасно защитит газобетон от проникновения паров из помещений, но ещё и позволит выполнить интересный дизайн интерьеров.

При использовании кирпича изнутри, толщина стены складывается из ширины блока (например, 300 мм) и ширины кирпича (120 мм). Когда кирпич монтируется снаружи, к этой сумме прибавляется ещё ширина вентилируемого зазора 40 мм. Итого 460 мм. Если между ними будет утеплитель, соответственно, нужно учесть и его толщину.

При использовании утеплителя, стена тоже считается многослойной. Теплоизоляция может закладываться как под кирпичную кладку, так и под навесные облицовочные материалы, монтируемые по обрешётке. В таких случаях общая толщина стены состоит из толщин кладки и утеплителя, вентзазора и высоты профиля каркаса.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Толщина облицовочного материала обычно исчисляется в миллиметрах, поэтому в расчёт не берётся.

Утеплитель может монтироваться на фасад без дополнительных конструкций. В этом случае он служит основанием под штукатурку, которая производится по предварительно усиленному стеклосеткой клеевому слою. Общая толщина такой стены составляет 360-510 мм, а её способность к сопротивлению передачи тепла рассчитывается исходя из суммарных характеристик каждого слоя – в том числе и штукатурного.

Несмотря на то, что дачный дом не используется круглый год, решать какой толщины выбрать газобетонный блок для наружной стены, нужно тоже исходя из климатических особенностей местности. Единственно, можно не предусматривать ни утепления, ни даже наружной облицовки, а просто оштукатурить или покрасить кладку снаружи.

Обратимся к типовым проектам дачных домов (обычно их ориентируют на среднюю полосу России), и посмотрим, какая необходимая толщина стены из газоблоков является комфортной для частного и дачного дома.

Находим на одном из сайтов проект AS-2148, и видим, что он в нём стены имеют толщину 400 мм. В другом проекте, под названием «Бернс», толщина заложена 300 мм. Третий вариант, под кодом id1165gcl, предусматривает для дачного дома толщину кладки 375 мм. Для сравнения: в проекте жилого дома id284ge (у этого же проектировщика), блок заложен шириной 400 мм. Так что разница невелика.

Меньше 300 мм (250 или даже 200) можно сделать только стены дачного дома в южных районах. На севере у стен должна быть толщина не менее 500, или же кладку придётся вести в два блока.

Мифы – вещь непредсказуемая, и немало их крутится вокруг газобетона. Один из них касается того, что если газоблочные стены не утеплить, ТР (точка росы) окажется в стене и она будет промерзать и разрушаться. Точкой росы в строительстве называется граница температур, на которой вода из газообразного состояния преобразуется в воду – то есть, происходит конденсация.

  • В отапливаемом здании тепловой контур формируется за счёт стен, задача которых – защищать дом от любых атмосферных воздействий. В помещениях вода присутствует всегда: только один человек испаряет около 4-х литров воды в сутки, не говоря уже о семье. А ещё готовка, стирка, банные процедуры.
  • Часть паров удаляется при помощи вентиляции и проветривания, а часть проникает в конструкции, стремясь выйти наружу. В том месте, где поток пара встречается с фронтом холода, он и начинает конденсацию. Что можно считать фронтом холода?
  • Прежде всего, это более плотные, чем газобетон, отделочные материалы (они всегда будут более холодными), которые смонтированы без отступа. Это может быть кирпичная или плиточная облицовка; цементная штукатурка не предназначенная для ячеистых бетонов; полимерные утеплители, не имеющие достаточной толщины.
  • Поэтому так важно, чтобы для выхода пара не было никаких препятствий, для чего материалы либо должны иметь более высокий коэффициент паропроницаемости, либо монтируются на относе (с отступом 4-5 см).
  • Во втором случае вентиляция осуществляется через зазор, но для этого обязательно предусматриваются технологические щели для обмена воздухом. В кирпичной облицовке для этого в каждом третьем ряду вертикальные швы оставляют незаполненными раствором, над финишным рядом оставляется зазор. Это позволяет не запереть влагу внутри, и в этом случае, стены никогда не будут промерзать.

Влажность вообще негативно влияет на теплоизолирующую способность газобетона, поэтому при строительстве домов из этого материала необходимо соблюдать несколько простых требований:

  1. Не забывать про устройство горизонтальной гидроизоляции на всех уровнях монтажа конструкций: под фундаментом; между фундаментом и цокольной стенкой; между цоколем и стеной дома.
  2. Избегать образования мостиков холода: стремиться к тому, чтобы материал был наиболее качественным, что позволит делать тонкие клеевые швы; заливать перемычки не по съёмной опалубке, а по U-блокам, или использовать готовые заводские изделия из газобетона.
  3. Начинать наружную отделку только после окончания внутренних работ, сопровождающихся «мокрыми» технологиями.
  4. Если для утепления используется пенопласт, подождать несколько месяцев, пока из кладки испарится начальная влага.
  5. Не оставлять фасад вообще без отделки.

Чем ниже зимой температура воздуха, тем ниже влажность как на улице, так и в помещении. Так что, зимой вероятность конденсирования пара невелика. Если в процессе возведения дома все вышеозвученные требования выполнены, по поводу промерзания стен точно переживать не придётся.

Определяем толщину стен из пеноблоков для жилого дома, пример расчета

При возведении дома из пенобетона необходимо не только вложить средства и усилия, но провести точные расчеты, позволяющие создать надежное и прочное здание. Кроме того, что будут использоваться хорошие материалы, нужно учитывать некоторые их качества и особенности монтажа. Одним из наиболее важных вопросов является то, какой толщины должна быть стена и как проводить расчет согласно всем нормам и стандартам.

Оглавление:

  1. Характеристики пеноблока
  2. Критерии выбора
  3. Сооружение несущих стен
  4. Варианты облицовки
  5. Оптимальный размер конструкций
  6. Пример расчета толщины

Технические параметры

Перед возведением следует знать основные технические характеристики:

  1. Пеноблок имеет малый вес, при этом плотность достаточно низкая (в несколько раз по отношению к керамзиту). Она может варьироваться в пределах 500-1600 кг/м, в зависимости от качества.
  2. Прочность на сжатие составляет около 4-5 МПа. Благодаря этим показателям можно возводить дом в 2-3 этажа.
  3. При соблюдении технологии можно обеспечить отличную защиту от внешнего шума, так как пенобетон отличается высокой звукоизоляцией, что позволяет существенно сэкономить на специальных звукоизолирующих материалах.
  4. Низкие теплопроводные качества по сравнению с древесиной и керамзитом. Стена из пеноблоков толщиной в 200 мм способна сохранять тепло так же, как из глиняных в 600 мм.
  5. Стоит отметить низкую ценовую категорию. Материал в количестве 1 м³ будет гораздо дешевле других кладочных изделий.

Критерии подбора толщины

При нахождении толщины стен можно подвергнуться многим рассуждениям и рекомендациям, которые в большинстве случаев оказываются недостоверными. Чтобы обеспечить безопасность и устойчивость здания к различным факторам, необходимо основываться на некоторых правилах подбора. Первым делом следует знать, насколько способна понижаться температура окружающей среды в холодное время. При показателях менее -25°C нужно возводить утолщенные стены.

Также важно определиться с использованием утеплителя. Если толщина пеноблока составляет 300 мм, то оптимально устраивать теплоизоляцию до 100 мм. При толщине более 300 мм можно обойтись простой штукатуркой. Блоки подвержены воздействию УФ-лучей, что плохо сказывается на эксплуатационных качествах, поэтому теплоизолятор будет обеспечивать должную защиту.

Существуют факторы, помогающие в подборе марки:

  1. Климатические особенности региона, в котором проводится строительство. За основу берется температурный диапазон, при этом учитываются самые крайние показатели этой области. Также толщина стен определяется от вероятности и интенсивности появления внешних воздействий. Это могут быть атмосферные осадки, давление и среднестатистическая влажность воздуха.
  2. Технические характеристики стройматериала. В качестве основных показателей учитываются звуко- и теплоизоляционные свойства, сопротивление теплоотдаче, а также максимальный результат проверки прочности на сжатие.

При возведении дома из пенобетона с умеренными климатическими условиями толщина несущих стен должна равняться 400-450 мм с дополнительной отделкой штукатурным слоем. При этом показатели теплопроводности и звуконепроницаемости будут соответствовать нормам.

Даже используя неавтоклавные блоки, стены будут выдерживать любые атмосферные явления и не терять несущей способности в процессе эксплуатации. Благодаря этому преимуществу их можно применять в условиях повышенной влажности. Годовое количество осадков никак не повлияет на надежность и прочность здания.

Выбирая изделия высокой марки, стоит учесть, что и теплопроводность их будет выше, соответственно, толщина стен тоже должна быть больше. Однако рекомендуется выбирать среднюю маркировку, так как она обладает достаточной прочностью и небольшим весом, что весьма важно для одно- или двухэтажного дома. Можно применять марку D500.

Возведение несущих стен

Кроме прочности не менее важным параметром при выборе материала является плотность и метод изготовления. К наиболее распространенным маркам неавтоклавного пенобетона относятся D600 и D800 плотностью 600 и 800 кг/м³. Толщина перегородки для климата в Московской или Санкт-Петербургской областях оптимально составит 400-500 мм без учета утеплителя. Несущие стены могут быть сооружены с габаритами 300х400х600 мм.

D600-800 наиболее эффективны при строительстве многоэтажных зданий (до 3-4 этажей), тогда соотношение теплоизоляционных, прочностных качеств и стоимости выйдет более практичным. Внутренние самонесущие перегородки можно возводить из той же марки, однако толщина будет гораздо меньше, например, 100х300х600 мм. Использование малогабаритных элементов позволит сэкономить пространство без уменьшения эксплуатационных характеристик, а также обеспечит должную звукоизоляцию, поэтому лишний шум в соседнем помещении не будет мешать.

Выбрав некачественный пенобетон, можно ухудшить характеристики стен и межкомнатных перегородок, что в дальнейшем выльется в дополнительные затраты на звуко- и теплоизоляцию. Чтобы не ошибиться с выбором при покупке, необходимо узнать о наличии сертификата, тогда при укладке блоки не будут лопаться и трескаться после возведения всего сооружения.

Нахождение толщины с расчетом на облицовку

С учетом того, что стены и межкомнатные перегородки облицовываются кирпичом или штукатуркой, конечная толщина получается немного больше. Поэтому перед началом строительства следует провести расчеты с финишной отделкой. Не менее важно сразу определиться с типом утеплителя и отделочным слоем. Наиболее часто используются такие комбинации:

  • Пеноблок толщиной 400 мм и штукатурка 2-5 см.
  • Элемент 400 мм и облицовочный кирпич.
  • Изделие 400 мм и вентилируемый фасад.
  • Два по 200 мм и штукатурка (или кирпичная кладка).
  • Блоки 200 мм, штукатурка + кирпич.
  • Кирпич + блок 200 мм + облицовочный кирпич + вентилируемый фасад.

Разновидностей компоновки гораздо больше, например, пеноблок с отделкой из керамической плитки для внутренних ненесущих перегородок или натурального камня для фасада. Однако важно учитывать условия климатической зоны, чтобы обеспечить максимальную надежность сооружения.

Оптимальные размеры для обеспечения несущей способности

В основном штукатурный слой занимает около 20 мм, таким образом, при стандартной толщине стены 400 мм общая составит 420-430 мм. Если использовать облицовочный кирпич с размерами 120 мм, то она будет 520 мм. Устраивая вентилируемый фасад, толщина увеличится до 560-700 мм. Это достаточно большие значения для стен одно- или двухэтажного здания.

В связи с этим самым практичным вариантом блоков, которые способны обеспечить и прочность, и низкую теплопроводность, является применение марки D600-D800. От выбора изделий и конструкции самой стены и межкомнатной перегородки будет зависеть не только долговечность возводимого сооружения, но и уровень комфорта при проживании в нем. Использование сертифицированного строительного материала позволит избежать лишних затрат времени и средств на восстановление или укрепление стен после значительных деформаций, которые были вызваны низким качеством изделий.

Расчет толщины для Московской области

Показатель сопротивления теплопередаче внешней стены с учетом всех отделочных слоев и материалов должен составлять 3,5°Cˑм/Вт. На основе технических характеристик можно сказать, что коэффициент для пеноблоков марки D600 и D800 равняется 0,14 и 0,21°Cˑм/Вт соответственно. Сопротивление у облицовочного кирпича не превышает 0,56°Cˑм/Вт, а у декоративной штукатурки – не более 0,58°Cˑм/Вт. Все показатели основаны на нормальных климатических условиях в регионе.

Далее проводится расчет:

  • Находится толщина штукатурки или кирпичной кладки. Как правило, для фасадов без дополнительной теплоизоляции элементы укладываются в два ряда – 120 мм.
  • Показатель разделить на коэффициент теплопроводности кирпича, тем самым определяется сопротивление, равное 0,21°Cˑм/Вт.
  • Повторно вычисляется формула для штукатурного слоя – 0,03°Cˑм/Вт.

Полученные числа необходимо подставить в формулу для определения толщины блока. Пенобетон плотностью 600 кг/м³ имеет общее сопротивление теплопередаче 3,5. От этого значения вычитается кирпич (0,21) и штукатурка (0,03), затем все умножается на коэффициент блока 0,14 и выходит 450 мм. Это конечный показатель, согласно которому должен выбираться материал. Важно сразу изменить единицы измерения.

Соответственно для D800: (3,5-0,21-0,03)х0,21=680 мм. В этом случае понадобится изделие значительно толще, поэтому расходы будут также больше. Однако вместо кирпичной кладки можно использовать высокоэффективный пенополистирол в качестве утеплителя, таким образом, есть возможность получить гораздо меньшую толщину фасада.


 

Инструкций по строительству внутренней стены | Руководства по дому

Автор: Гленда Тейлор Обновлено 15 декабря 2018 г.

Стены определяют жилые помещения, обеспечивая уединение для спален и ванных комнат, направляя пешеходов и создавая функциональные планы этажей. Большинство стен поднимаются вверх во время первоначального строительства дома, и подрядчик по каркасу использует предварительно вырезанные стеновые стойки и стандартные расстояния между стойками. Существует два метода строительства внутренних стен: первый и самый простой заключается в том, чтобы построить каркас стены, когда он лежит на полу, а затем поставить его и прикрепить.Однако для возведения стены в существующей комнате требуется обрамление стены на месте.

Несущие и перегородки

Практически все внешние стены являются несущими, то есть они несут вес конструкции наверху и переносят его через нижние стены на землю. Внутренние стены состоят как из несущих, так и из не несущих стен, называемых перегородками. В обоих типах стен используются аналогичные стандарты каркаса, но несущая стена обычно располагается непосредственно над другой несущей стеной, балкой или несущей колонной.Построить перегородку можно практически где угодно.

Высота стены

Стандартная высота потолка составляет 8 футов от готового пола до нижней стороны гипсокартона потолка. Стеновые стойки представляют собой габаритные доски, предварительно вырезанные для обрамления стен. 8-футовая стойка имеет длину 92 и 5/8 дюйма, что более чем на 3 дюйма короче 8 футов, но стандартная внутренняя стена также состоит из напольной плиты высотой 1 ½ дюйма и двух потолочных пластин, которые добавляют дополнительные 3 дюйма к высоте стены.Это дает вам приблизительную высоту стены 97 и 1/8 дюйма. С добавлением потолочного гипсокартона ½ дюйма и отделки пола окончательная высота стены должна быть очень близкой к 8 футам.

Толщина стены

Стенка два на четыре имеет ширину 3 ½ дюйма, а внутренняя стена обычно имеет ½-дюймовый гипсокартон, установленный с обеих сторон, в результате чего толщина стены составляет 4 ½ дюйма. Однако стены, в которых установлена ​​сантехника, например стены за раковинами, должны быть толще стандартных стен. Стеновые стойки два на шесть имеют ширину 5 ½ дюймов и обеспечивают большее пространство для стоек для прокладки дренажных труб, воздуховодов или других механических элементов.С добавлением гипсокартона с обеих сторон стена размером два на шесть имеет ширину 6 ½ дюймов.

Стандарты каркаса

В стандартной внутренней стене правильное расстояние между стойками имеет важное значение. Стандартные стойки находятся на расстоянии 16 дюймов друг от друга, измеренном от центра одной стойки до центра следующей стойки. Это называется установкой стоек «по центру», что обозначается как «16 дюймов OC». Для несущих стен второго этажа, которые располагаются непосредственно над несущими стенами этажом ниже, лучше всего выровнять стеновые стойки. с одного этажа на этаж ниже.Это означает, что стенные стойки на верхнем этаже будут прямо над стеновыми стойками на нижнем этаже, даже если стены разделяют горизонтальные стеновые плиты, балки перекрытия и материалы чернового пола. Иногда архитектор может потребовать, чтобы расстояние между стойками стен составляло 24 дюйма или, реже, 19,2 дюйма, в зависимости от других структурных элементов дома.

Способы возведения стен

В новом строительстве стены часто обрамляют в горизонтальном положении, а затем строитель поднимает стеновой блок и прикрепляет его к балкам перекрытия и к прилегающим стенам.Стена состоит из нижней пластины, стеновых стоек и верхней пластины. Вторая верхняя пластина, называемая соединительной пластиной, устанавливается после того, как все стены будут подняты. Во время реконструкции стены часто обрамляют на месте, прикрепляя нижнюю пластину к полу и прикрепляя одну верхнюю пластину к балкам потолка. Стандартные стенные стойки слишком короткие для установки на месте, поэтому строители используют обычные пиломатериалы длиной 8 футов и размером два на четыре и разрезают каждую стойку так, чтобы она поместилась между верхней и нижней пластинами. Крепежная пластина не требуется для настенного каркаса.

Инструменты и расходные материалы

Строительство внутренней стены требует точных измерений. Измерительная лента, обрамляющий квадрат и меловая линия необходимы для размещения стены на черновом полу, а лазерный уровень или отвес помогают выровнять верхнюю потолочную пластину непосредственно над напольной пластиной для строительства стены на месте. Циркулярная пила отлично подходит для резки стеновых каркасов, а гвоздезабиватель с гвоздями 16d позволяет быстро обрезать лежащие стены и прикрепить плиты пола и потолка.Чтобы прикрепить отдельные стенные стойки при установке на месте, используйте гвоздь 8d. Обрамление стен на месте требует «гвоздя на ногах», которое включает в себя вбивание гвоздей 8d под углом 45 градусов через концы шпилек, чтобы прикрепить их к пластинам, которые уже установлены.

В подвале

Обрамление внутренней стены в подвале идентично обрамлению надземных стен, за исключением того, что нижняя стеновая плита должна быть химически обработана для предотвращения повреждения от влаги. То же самое и с любыми стенными стойками, которые крепятся к бетонным стенам.Чтобы прикрепить пиломатериалы к бетону, предварительно просверлите отверстия в деревянных пластинах и используйте перфоратор, чтобы вставить винты по бетону длиной не менее 2 3/4 дюйма.

Влияние толщины стены на тепловое поведение железобетонных стен в условиях пожара | Международный журнал бетонных конструкций и материалов

Результаты экспериментов

Образцы стен различной толщины

Примерно через 20 минут нагревания влага в бетоне образца W15 начинает испаряться, и через неэкспонированную поверхность начинает просачиваться пар.Аналогичное явление наблюдается и с более толстыми образцами W20 и W25, но испарение влаги начинается намного позже, чем после 20 мин нагрева. Кроме того, наибольший поток влаги наблюдается в W15, потому что влаге легче перемещаться через меньшую толщину W15, чем через более толстые стенки W20 и W25.

После 2 часов огневых испытаний на испытанных образцах не наблюдается выкрашивания или значительной деформации, как показано на рис. С 6а по 6f.Обычно для всех образцов поверхности, подвергшиеся воздействию огня, обесцвечиваются и появляются мелкие трещины. На неэкспонированных поверхностях наблюдается относительно небольшое количество трещин и белых пятен, вызванных обезвоживанием. Существенных различий в трещинах, обесцвечивании и деформациях между образцами не обнаружено.

Рис. 6

Фотографии образцов после испытания на огнестойкость в течение 2 ч. a W15 ( слева, открытая поверхность, справа, неэкспонированная поверхность). b W20 ( слева, открытая поверхность, справа неэкспонированная поверхность). c W25 ( слева, открытая поверхность, справа неэкспонированная поверхность). d W15V ( левая, открытая поверхность, правая неэкспонированная поверхность). e W20V ( слева, открытая поверхность, справа, неэкспонированная поверхность). f W25V ( слева, открытая поверхность, справа, неэкспонированная поверхность).

На рис. 7 показаны зависимости температуры от времени, измеренные в различных местах с помощью термопар, помещенных в образцы и нагревательную печь.Как показано на рис. 7а, температуры, измеренные на расстоянии 30 мм от поверхности, подверженной воздействию огня, намного выше, чем температуры, измеренные в центре и 30 мм от необработанной поверхности. Кроме того, повышение температуры поддерживается в течение 5 минут или более из-за испарения влаги, когда она достигает около 100 ° C. Разница во времени, необходимом для выдерживания 100 ° C на разной глубине образца, зависит от количества влаги, присутствующей в стене. Предварительно нагретые образцы W15V, W20V и W25V демонстрируют аналогичную тенденцию, как показано на рис.7b.

Рис. 7

Зависимость времени от температуры как толщины стенки. a Образцы без предварительного нагрева. b Предварительно нагретые образцы.

В таблице 3 представлены значения температуры в различных местах после 120 мин нагревания. В то время как температура печи составляет 1051 ° C, температуры на расстоянии 30 мм от поверхности, подверженной воздействию огня (C1), достигают 644, 723 и 764 ° C для W15, W20 и W25 соответственно. Интересно отметить, что в стенке W25 достигается более высокая температура, чем в других стенках, и аналогичная тенденция обнаруживается также с предварительно нагретыми образцами стен.Температуры на расстоянии 30 мм от поверхности стены, подверженной возгоранию (C1), составляют 578, 678 и 695 ° C в стенах W15V, W20V и W25V соответственно. Температуры в центре толщины стенки (C2) составляют 217, 87 и 105 ° C для стенок W15, W20 и W25 соответственно. Наконец, температуры на расстоянии 30 мм от поверхности, не подверженной воздействию огня (C3), достигают 106, 60 и 43 ° C для образцов W15, W20 и W25 соответственно. Более толстые стенки с толщиной 200 мм и 250 мм испытывают большую разницу температур между C1 и C3.Другими словами, эти стены толщиной 150 мм передают тепло лучше, чем стена толщиной 200 мм и более.

Таблица 3 Температуры при С1 после нагревания в течение 2 часов.

Как показано на рис. 8a-8c, температура обычно изменяется в зависимости от толщины образцов W15, W20 и W25 (в точках 1, 2 и 3). Однако наблюдается очень небольшая разница температур между центральной, левой, верхней и нижней частями стен (C, M, T и B), пока термопары расположены на одинаковом расстоянии от поверхности стены.Следовательно, одномерное распространение тепла по толщине можно рассматривать как тепловое поведение испытуемых стен.

Рис. 8

Зависимость времени от температуры в различных местах вдоль точек поперечного сечения (C, M, T и B). а Образец W15. б Образец W20. c Образец W25.

В таблице 4 показано время, необходимое для того, чтобы место C1 достигло различных уровней температуры. Со временем скорость повышения температуры у всех образцов постепенно снижается.Для достижения температуры C1 100 ° C требуется более короткое время по сравнению с другими уровнями температуры из-за более высокой теплопроводности. Среди образцов W25 показывает самую высокую скорость повышения температуры на каждом уровне.

Таблица 4 Время, необходимое для достижения термопарой C1 различных температурных уровней.

Предварительно нагретые и ненагретые образцы стенок

На рисунках 9a — 9c показаны зависимости температуры от времени для предварительно нагретых и ненагретых образцов с различной толщиной стенки, а также температуры нагревательной печи.Температуры, измеренные на расстоянии 30 мм от поверхности, подверженной воздействию огня, ниже у предварительно нагретых образцов, W15V, W20V и W25V, чем у непрогретых образцов, W15, W20 и W25. В отличие от образцов без предварительного нагрева, которые показывают устойчивое повышение температуры примерно на 100 ° C, предварительно нагретые образцы показывают повышение температуры без области устойчивого повышения температуры.

Рис. 9

Зависимость времени от температуры как количества влаги. a Образцы W15 и W15V. b Образцы W20 и W20V. c Образцы W25 и W25V.

Однако температуры в точках C2 и C3 предварительно нагретых образцов выше, чем у непрогретых образцов. Это связано с тем, что предотвращается передача тепла от огня к противоположной поверхности из-за закупорки влаги внутри стен, когда образцы не нагреваются. Другими словами, предварительно нагретые стены практически не забиваются влагой, что приводит к лучшей передаче тепла через толщину стен.

Влияние влаги на теплопередачу также показано на рис. 10. Распределение температуры по толщине непрогретых образцов показывает, что температура на расстоянии 30 мм от огня выше, чем у предварительно нагретых образцов. Однако температура на некотором расстоянии от огня у непрогретых образцов ниже, чем у предварительно нагретых. Другими словами, большая разница температур между участками C1 и C3 наблюдается в образцах без предварительного нагрева по сравнению с предварительно нагретыми образцами, что становится более очевидным в образцах стенок толщиной 200 мм и 250 мм.

Рис. 10

Распределение температуры в образцах. , W15 и W15V. b W20 и W20V. c W25 и W25V.

Обсуждение

Как отмечалось выше, самая толстая стена, имеющая толщину 250 мм, испытывает наивысшую температуру, измеренную на поверхности, подверженной воздействию огня, и самое короткое время для достижения любого температурного уровня, особенно когда бетон имеет большее содержание влаги. Причина может быть связана с движением влаги в бетонной стене при одностороннем возгорании.

При повышении температуры влага в нагретой части перемещается к относительно более холодной части стены. Следовательно, зона влажности образуется на определенном расстоянии от поверхности, подверженной воздействию огня (NIST 1997; Ko et al. 2007; Lee 2009; Consolazio et al. 1998). Если стена достаточно тонкая, например, толщина стены 150 мм, влага легко выходит через неэкспонированную поверхность, не образуя зоны влажности в середине стены. Однако влаге относительно трудно проходить через более толстые стенки, такие как толщина стенки 200 или 250 мм, как показано на рис.11, и внутри бетонной стены образуется влагозаборник (Hamarthy, 1965). В предыдущих исследованиях засорение влагой обычно упоминалось в высокопрочных бетонных стенах при пожаре и рассматривается как причина отслаивания; однако он также может присутствовать в бетоне нормальной прочности из-за высокого водоцементного отношения и может предотвращать распространение тепла. Поэтому, чтобы поддержать это явление, в следующем разделе представлены аналитические исследования, показывающие влияние засорения влаги на тепловое поведение стен.Аналитическая модель включает моделирование с помощью метода конечных элементов засора влаги, работающего в качестве теплового барьера, что приводит к повышению температуры вблизи открытой поверхности стены для предотвращения передачи тепла к противоположной необлученной поверхности.

Рис. 11

Последовательность движения влаги в зависимости от толщины бетонной стены. а Толщина бетонной стены 150 мм. b Бетонная стена толщиной 200/250 мм.

Аналитический подход

Содержание влаги в бетоне оказывает значительное влияние на тепловые свойства, такие как теплопроводность и удельная теплоемкость бетона нормальной прочности (Kodur 2014; Kodur et al.2008; Szoke 2006). Поэтому важно учитывать влияние влаги при прогнозировании теплового поведения бетонных конструкций при пожаре.

Было проведено всего несколько исследований с использованием численного анализа или экспериментальных исследований миграции влаги и развития порового давления, и они в основном связаны с растрескиванием высокопрочного бетона (Beyea et al. 1998; Consolazio et al. 1998; Bazant and Thonguthai 1979; Khoylou 1997; Selih et al. 1994; Dwaikat and Kodur 2009; Kodur and Phan 2007).Практическая методика моделирования для прогнозирования распределения температуры бетонных стен при пожаре с учетом движения влаги еще полностью не разработана.

В этом исследовании были созданы трехмерные конечно-элементные модели всех образцов для моделирования пожарных экспериментов с использованием ABAQUS 6.10-3 (Theory Manual 2010). В модели используются 8-узловые линейные кирпичные элементы для бетонных стен и арматурных стержней. Несмотря на то, что экспериментальные результаты показывают одномерное распространение тепла по толщине, 3D-модели генерируются для того, чтобы использовать распределения температуры, предсказанные на основе анализа переходного теплового режима, для дальнейших исследований механического анализа стен, поврежденных огнем.В модели термические свойства, зависящие от температуры, такие как эффективная удельная теплоемкость и удельная электропроводность бетона, взяты из Еврокода 2 (EN 1992-1-2). Температуры, зависящие от времени согласно стандартной кривой нагрева ISO, назначаются для одной поверхности каждой модели стены, в то время как начальная температура задается как 20 ° C для всех поверхностей. Подробные методы моделирования также можно найти в предыдущем исследовании Choi et al. (2012).

Поскольку точное моделирование движения влаги было очень сложным, предлагается упрощенный подход для учета движения влаги в бетонной стене.Вместо моделирования стеновых элементов, влажность которых постепенно изменяется по глубине, модель идеализирована путем определения трех различных зон, как показано на рис. 12: засорения из-за влаги, сухих и влажных зон. Для моделей толщиной 200 и 250 мм определяется участок для засорения влаги, где передача тепла прерывается засорением из влаги. Согласно Национальному институту стандартов и технологий (NIST 1997), рекомендуется располагать секцию засорения влаги на расстоянии от 50 до 60 мм от поверхности, подверженной возгоранию, для толстых стен толщиной от 200 до 250 мм, в то время как тонкая стена толщиной 150 мм не имеет участка, забивающего влагу.Поскольку температуры, измеренные в месте C1 (30 мм от поверхности экспонирования) этих двух стен, выше, чем температура в месте C1 стены с толщиной 150 мм. Кроме того, тепло плохо распространяется в стенах толщиной 200 и 250 мм по сравнению со стеной толщиной 150 мм.

Рис. 12

Разделенные области для движения влаги. а Толщина бетонной стены 150 мм. b Бетонная стена толщиной 200/250 мм.

Если приняты температурно-зависимые термические свойства из Еврокода 2, аналитический результат (температуры) модели W15V хорошо согласуется с измеренными экспериментальными результатами, как показано на рис.13а. Для других моделей стен W15, W20, W20V, W25 и W25V удельная теплоемкость сухой и влажной зон заимствована из Еврокода 2, влажная зона моделей стен без предварительного подогрева использует значения удельной теплоемкости с содержанием влаги. 7%, а в моделях с подогревом стен — 6%. Возможно, в сухой зоне используется удельная теплоемкость бетона с влажностью 3% для моделей стен без предварительного подогрева и с подогревом, в то время как в секции засорения влаги используется 15% -ное содержание влаги на основе экспериментальных данных и относительного распределения насыщения, как указано. Ко и др.(2007) и Ли (2009).

Рис. 13

Время-температура Сравнение результатов анализа и экспериментов при толщине стенки 150 мм. a W15 V. b W15.

Для предварительно нагретых стен толщиной 200 и 250 мм при температуре 300 ° C теплопроводность засора влаги определяется как 50% от проводимости обычного бетона, поскольку влага активно испаряется при температуре 300 ° C и задерживает теплопередачу, когда бетон достигает температуры более 300 ° C. ° C.Электропроводность увеличивается на 60 и 20% для W20V и W25V соответственно. Для модели W15 теплопроводность засора влаги составляет 50% от проводимости обычного бетона независимо от температуры, чтобы изменить температуру по сравнению с W15 V выше 300 ° C.

Результаты анализа

На рисунках 13, 14 и 15 показаны результаты графиков зависимости температуры от времени, полученные в результате анализа, в сравнении с экспериментами. Как видно, аналитические результаты хорошо согласуются с экспериментальными результатами, особенно для температур, полученных на расстоянии 30 мм от нагреваемой поверхности.

Рис. 14

Время-температура Сравнение результатов анализа и экспериментов при толщине стенки 200 мм. a W20 V. b W20.

Рис. 15

Время-температура Сравнение результатов анализа и экспериментов при толщине стенки 250 мм. а W25V. b W25.

На рис. 13a и 13b, аналитические результаты распределения температуры для случая стенок толщиной 150 мм сравниваются с экспериментальными результатами.В модели W15 V предполагается, что засорение влаги не формируется из-за испарения влаги во время процесса предварительного нагрева, тогда как модель W15 включает зону засорения влаги. Это предположение подтверждается экспериментальными результатами, показывающими, что тепло относительно легко проходит через предварительно нагретую стенку, чем через непрогретую стенку. Поскольку распределения температуры, предсказанные для моделей без предварительного подогрева и с подогревом толщиной 150 мм, хорошо согласуются с экспериментальными результатами, это предположение можно считать приемлемым.На рис. 14 и 15 показаны зависимости температуры от времени для стен толщиной 200 и 250 мм соответственно. В этих моделях предполагается, что зоны засорения влагой созданы как для предварительно нагретых, так и для непрогретых стен. Это предположение сделано потому, что экспериментальные результаты показывают, что влага предварительно нагретых стенок не полностью испаряется во время предварительного нагрева, когда образцы имеют толщину 200 или 250 мм. Поскольку зона засорения влагой задерживает распространение тепла, прогнозируемые температуры в сухой зоне быстро повышаются во время нагрева, в то время как температуры за зоной засорения влагой не повышаются эффективно.Такая задержка распространения тепла становится значительной в моделях W25 и W25V, поскольку влажность увеличивается с увеличением толщины стенки. Аналитические результаты моделей W20, W20V, W25 и W25V, имеющих зону засорения влагой, хорошо согласуются с экспериментальными результатами и подтверждают предположение.

Чтобы исследовать влияние содержания влаги в зоне засорения влаги на распределение температуры стен, проводятся параметрические исследования с различным содержанием влаги.Влажность моделей стен варьируется на 5, 6, 7 и 8%, в то время как другие параметры, такие как толщина стенки и условия нагрева, фиксируются как 250 мм и 2-часовой нагрев со стандартной кривой нагрева ISO, соответственно. В зоне засорения влагой приняты зависящие от влажности удельная теплоемкость и проводимость бетона на основе исследований Ko et al. (2007), Ли (2009), Шнайдер (1982) и Янссон (2004). На рисунке 16а показаны аналитические результаты распределения температуры по толщине стенки, рассчитанные на основе моделей стенок с учетом и без учета засорения влагой.Аналитические результаты показывают, что распределение температуры изменяется, когда модель стены включает зону влажности, так что более высокая температура наблюдается в передней части зоны влажности по сравнению с моделью без зоны засорения влагой. Кроме того, по мере увеличения содержания влаги разница температур между передней и задней частью зоны влажности увеличивается, как показано на рис. 16b. Дальнейшие исследования необходимы для подтверждения точности прогноза и количественной оценки взаимосвязи между содержанием влаги и эффективностью распространения тепла.

Рис. 16

Распределение температуры по толщине стенки. a Эффект моделирования зоны засорения влагой. b Влияние различной влажности.

Руководство по строительству жилых домов для одной семьи

Руководство по строительству жилых домов для одной семьи — Каркас стен

СТЕНА


Быстрый указатель

Выдержки из Единого строительного кодекса 1994 г. TM, авторское право ©
1994, включены в это руководство с разрешения издателя
Международная конференция строителей.


сек. 2318. Обрамление стен. Обрамление экстерьера и
внутренние стены должны соответствовать положениям, указанным в разделе .
2326
, если не указан конкретный дизайн.

Стены из деревянных каркасов и несущие перегородки не должны выдерживать более двух этажей.
и крышу, если анализ, удовлетворительный для официального представителя здания, не показывает
что усадка деревянного каркаса не повлияет на конструкцию
или любые сантехнические, электрические или механические системы или другое установленное оборудование
в нем из-за чрезмерной усадки или дифференциальных перемещений, вызванных усадкой.Анализ также должен показать, что водосточная система с крыши и вышеупомянутое
системы или оборудование не будут подвергаться неблагоприятному воздействию или, в качестве альтернативы,
такие системы должны быть спроектированы с учетом дифференциальной усадки
или движения.


Накладки на пороги

сек. 2326,6. Фундаментные плиты или подоконники. Фундамент
плиты или подоконники, опирающиеся на бетонный или каменный фундамент, должны быть закреплены болтами.
в соответствии с требованиями Раздела 1806.6.

сек.1806,6. Фундаментные плиты или подоконники. Фундаментные плиты или пороги
крепится к фундаменту или фундаментной стене болтами не менее чем на 1/2
стальные болты номинальным диаметром дюйма (13 мм), закрученные не менее 7 дюймов (178 мм).
мм) в бетон или каменную кладку и на расстоянии не более 6 футов (1829 мм)
отдельно. На каждую деталь должно приходиться не менее двух болтов, при этом один болт должен находиться
в пределах 12 дюймов (305 мм) от каждого конца каждой детали. Гайка подходящего размера
и шайба должна быть затянута на каждом болте к пластине.Фундаментные плиты
и подоконники должны быть из древесины, указанной в Разделе 2317.4.

сек. 2317,4. Плиты, пороги и шпалы. Весь фундамент
плиты или подоконники и шпалы на бетонной или каменной плите, которая находится в прямом
контакт с землей и подоконники, которые опираются на бетонный или каменный фундамент,
должны быть обработаны из дерева или красного дерева фундамента, все с маркировкой или клеймом
утвержденное агентство.

Дополнительные местные требования: плиты подоконника наружной стены, опирающиеся на бетон
должен быть фундамент из красного дерева или пиломатериалов, обработанных под давлением, и должен быть номинальным
2 дюйма толщиной (2x материала) с их шириной как минимум равной ширине
используемых шпилек.Стальные болты, используемые для крепления порога, должны быть не менее
10 дюймов в длину.


Стеновые шпильки

сек. 2326.11.1. Размер, высота и интервал. Размер, высота и шаг
шпилек должно соответствовать Таблица 23-I-R-3 , за исключением
шпильки не должны располагаться на расстоянии более 16 дюймов (406 мм) по центру, или
поддерживают больше, чем крышу и потолок, или превышают 8 футов (2438 мм) в высоту
для наружных стен и несущих стен или 10 футов (3048 мм) для внутренних
ненесущие стены.

сек. 2326.11.2. Детали обрамления. Шпильки должны быть размещены
с их широким размером, перпендикулярным стене. Не менее трех
стойки должны быть установлены в каждом углу внешней стены.

ИСКЛЮЧЕНИЕ: В углах можно не устанавливать третью стойку за счет использования деревянных распорок или
опорные планки из деревянной структурной панели толщиной 3/8 дюйма (9,5 мм), 3/8 дюйма
(9,5 мм) ДСП типа 2-M, пиломатериалы толщиной 1 дюйм (25 мм) или другие одобренные
устройства, которые будут служить адекватной основой для крепления облицовки
материалы.Если речь идет о показателях огнестойкости или прочности на сдвиг, древесина
проставки, опорные планки или другие устройства не должны использоваться, если специально
одобрен для такого использования.
ТАБЛИЦА 23-I-R-3 — Размер, высота и расстояние между деревянными шпильками
Несущие стенки Стены ненесущие
Размер шпильки
(дюймы)
Поперечно
Без опоры
Высота шпильки (1)
Поддержка
Крыша и потолок Только
Опора
на один этаж,
на крышу и потолок
Опора
Два этажа,
Крыша и потолок
Поперечно
Без опоры
Высота шпильки (1)
Интервал
(Ноги) Интервал в дюймах (Ноги) (Дюймы)
1.2 х 3 (2) 10 16
2. 2 х 4 10 24 16 14 24
3. 3 х 4 10 24 24 16 14 24
4.2 х 5 10 24 24 16 24
5. 2 х 6 10 24 24 16 20 24

(1) Указанная высота — это расстояние между размещенными точками боковой поддержки.
перпендикулярно плоскости стены.Увеличение неподдерживаемой высоты
разрешено, если это оправдано анализом.

(2) Не может использоваться в наружных стенах.


Верхние пластины

сек. 2326.11.2. Детали обрамления (продолжение). Несущая и наружная стена
шпильки должны быть закрыты двойными верхними пластинами, установленными для обеспечения перекрытия
на углах и на пересечении с другими перегородками. Торцевые соединения в двойном исполнении
верхние пластины должны иметь смещение не менее 48 дюймов (2438 мм).

ИСКЛЮЧЕНИЕ: Может использоваться одна верхняя пластина при условии, что пластина надежно закреплена на
стыки, углы и пересекающиеся стены не менее чем на 3 дюйма
на 6 дюймов (76 мм на 152 мм) на толщину 0,036 дюйма (0,90 мм) (калибр 20) оцинкованные
сталь, которая прибивается к каждой стене или сегменту стены шестью гвоздями 8d или
эквивалент, при условии, что стропила, балки или фермы центрируются над
шпильки с допуском не более 1 дюйма (25 мм).

Если шпильки подшипника расположены с интервалом 24 дюйма (610 мм), а верхние пластины
меньше двух размером 2 на 6 дюймов (51 мм на 152 мм) или двух размером 3 на 4 дюйма
(76 мм на 102 мм), а также когда перекрытие перекрытия, фермы перекрытия или крыша
фермы, которые они поддерживают, расположены с интервалами более 16 дюймов (406 мм),
такие балки или фермы должны нести в пределах 5 дюймов (127 мм) стойки под
или должна быть установлена ​​третья пластина.

Внутренние ненесущие стены могут быть закрыты одинарной верхней пластиной.
обеспечить перекрытие по углам и на пересечении с другими стенами и
перегородки. Пластина должна быть непрерывно связана в местах стыков твердой блокировкой.
не менее 16 дюймов (406 мм) в длину и равный по размеру пластине или
Металлические стяжки размером 1/8 дюйма на 1 1/2 дюйма (3,2 мм на 38 мм) со стыками
крепится двумя гвоздями 16d с каждой стороны стыка.

Шпильки должны полностью опираться на пластину или порог не менее 2 дюймов (51
мм) толщиной не меньше ширины стоек.


Распорка стены

сек. 2326.11.3. Подтяжка. Стеновые линии должны состоять из
стеновые панели, соответствующие требованиям по расположению, типу и количеству
распорки, указанные в , таблица 23-I-W , расположены на одной линии или со смещением от каждого
другое — не более чем на 4 фута (1219 мм). Стеновые панели с подкосами должны начинаться с
не более 8 футов (2438 мм) от каждого конца укрепленной линии стены. Все в скобках
стеновые панели должны быть четко обозначены на планах.Строительство подкосных
стеновые панели должны быть выполнены одним из следующих способов:

  1. Номинальные сплошные диагональные распорки размером 1 дюйм на 4 дюйма (25 мм на 102 мм) позволяют
    в верхнюю и нижнюю пластины и промежуточные шпильки, расположенные под углом, не
    более 60 градусов или менее 45 градусов от горизонтали и прикреплены
    к обрамлению в соответствии с Таблица 23-I-Q.
  2. Деревянные доски с минимальной толщиной 5/8 дюйма (16 мм) по диагонали.
    на шпильках, расположенных не более 24 дюймов (610 мм) по центру.
  3. Обшивка деревянными конструкционными панелями толщиной не менее 5/16 дюйма
    (7,9 мм) для шага шпилек 16 дюймов (406 мм) и не менее 3/8 дюйма (9,5 дюйма).
    мм) для шага шпилек 24 дюйма (610 мм) в соответствии с , раздел 2315
    и Таблица 23-I-P.
  4. Обшивка ДВП панели размером 4 на 8 футов (1219 мм на 2438 мм) не менее
    толщиной менее 1/2 дюйма (13 мм), нанесенная вертикально на шпильки, расстояние между которыми не превышает 16
    дюймов (406 мм) по центру при установке в соответствии с , раздел 2315
    и Таблица 23-I-P.
  5. Гипсокартон [обшивка, толщиной 1/2 дюйма (13 мм) и шириной 4 фута (1219 мм),
    стеновая плита или фанерованная основа] на стойках, расстояние между которыми не превышает 24 дюймов (610 мм)
    по центру и прибит на 7 дюймов (178 мм) по центру гвоздями в соответствии с требованиями
    Таблица 25-I.
  6. Стеновые панели обшивки из ДСП, если они установлены в соответствии с таблицей .
    23-И-Н-2.
  7. Штукатурка из портландцемента (штукатурка) на стойках с шагом 16 дюймов (406 мм) по центру
    установлен в соответствии с таблицей 25-I .
  8. Сайдинг ДВП при установке в соответствии с п. 2320.6
    и Таблица 23-I-O.

Для методов 2, 3, 4, 6, 7 и 8 каждая стеновая панель с подкосами должна быть не менее
48 дюймов (1219 мм) в длину, покрывая три области стойки, где стойки
16 дюймов (406 мм) друг от друга и покрывают два пространства для стоек, где стойки расположены на расстоянии друг от друга.
24 дюйма (610 мм) друг от друга.

Для метода 5 каждая стеновая панель с подкосами должна быть не менее 96 дюймов (2438 мм).
в длину при нанесении на одну сторону стеновой панели со связями и 48 дюймов (1219
мм) при нанесении на обе стороны.

Все вертикальные стыки обшивки панели должны проходить через стойки. По горизонтали
стыки должны происходить по блокировке, равной размеру шипа, за исключением случаев, когда
Отказ от требований к установке для конкретных материалов оболочки.

Подошвы стеновых панелей с подкосами должны быть прибиты гвоздями к каркасу пола и верху.
пластины должны быть соединены с каркасом выше в соответствии с таблицей .
23-I-Q.
Подоконники должны быть прикручены к фундаменту или плите в соответствии с
с Раздел 1806.6. Если балки перпендикулярны укрепленной стене
линиями выше, блокировка должна быть предусмотрена под и на одной линии с фигурными скобками.
стеновые панели.

сек. 2326.11.4. Альтернативные скрепленные стеновые панели. Любая стеновая панель
требуется в соответствии с разделом Раздел 2326.11.3 может быть заменен на альтернативную скобу
стеновая панель построена в соответствии со следующим:

1. В одноэтажных зданиях длина каждой панели должна быть не менее
более 2 футов 8 дюймов (813 мм) и высотой не более 10 футов (3048 мм).
мм).Каждая панель должна иметь оболочку с одной стороны минимальной толщиной 3/8 дюйма.
(9,5 мм) фанерная обшивка, прибиваемая обычными или оцинкованными гвоздями 8d
в соответствии с таблицей 23-I-Q и заблокированы по всем краям фанеры.
Два анкерных болта, установленные в соответствии с разделом Раздел 1806.6 , должны
на каждой панели. Анкерные болты должны быть размещены в четверти панели.
точки. Каждая торцевая стойка панели должна иметь крепежное приспособление, прикрепленное к
фундамент, способный обеспечить утвержденную грузоподъемность не менее
чем 1800 фунтов (816.5 кг). Устройство крепления должно быть установлено в
в соответствии с рекомендациями производителя. Панели должны поддерживаться
непосредственно на фундамент или на каркас пола, опирающийся непосредственно на фундамент
который является непрерывным по всей длине укрепленной линии стены. Этот
фундамент должен быть усилен не менее чем одним деформированным стержнем № 4
Верх и низ.

2. В первом этаже двухэтажного дома каждая подкрепленная стеновая панель
должны соответствовать разделу 2326 .11.4, поз. 1, , за исключением того, что
Обшивка из фанеры должна быть предусмотрена с обеих сторон, три анкерных болта
должен быть размещен в одной пятой точке, а подъемная способность стяжного устройства
не должно быть менее 3000 фунтов (1360,8 кг).


Калечащие стены

сек. 2326.11.5. Cripple Walls. Фундамент каркасные стены необходимо оформить.
шпилек размером не меньше, чем указанные выше, с минимальной длиной
14 дюймов (356 мм), или должен быть обрамлен сплошной блокировкой.При превышении
4 фута (1219 мм) высотой, такие стены должны быть обрамлены стойками, имеющими
размер необходим для дополнительной истории.

Такие стены, высота стоек которых превышает 14 дюймов (356 мм), считаются
быть стенами первого этажа с целью определения необходимых связей
от Раздела 2326.11.3. Обшивка массивным блоком или деревянными конструкционными панелями
может использоваться для фиксации поврежденных стен с высотой стоек 14 дюймов (356
мм) или меньше.

Расстояние между граничными гвоздями для требуемого крепления стен не должно превышать 6
дюймов (152 мм) по центру вдоль фундаментной плиты и верхней плиты
калечащая стена.Размер гвоздя, расстояние между гвоздями для забивания гвоздей и другие ограничения.
требования к ограждению гвоздей должны соответствовать требованиям в других частях кодекса.
для конкретных используемых крепежных материалов.


Заголовки стены

сек. 2326.11.6. Заголовки. Заглушки и перемычки должны соответствовать
требования, изложенные в этом параграфе и вместе с их подтверждающими
системы должны быть спроектированы так, чтобы выдерживать нагрузки, указанные в кодексе. Все
в несущих стенах должны быть предусмотрены отверстия шириной 4 фута (1219 мм) или менее.
с коллектором, состоящим из двух кусков бруса размером 2 дюйма (51 мм)
размещены на краю и надежно скреплены между собой или 4-дюймовые (102 мм) пиломатериалы из
эквивалентное сечение.Все отверстия шириной более 4 футов (1219 мм) должны
иметь коллекторы или перемычки. Каждый конец перемычки или перемычки должен
иметь длину подшипника не менее 1 1/2 дюйма (38 мм) на полную
ширина перемычки.


Фанерные диафрагмы

Гвозди для оболочки диафрагмы или другие одобренные соединители для оболочки должны быть
ведомый заподлицо, но не должен разрушать поверхность оболочки.

Гвозди должны быть размещены на расстоянии не менее 3/8 дюйма от края панели.
разнесены не более чем на 6 дюймов по центру вдоль краевых опор панели и должны быть
прочно вбиты в элементы каркаса.

Фанерные диафрагмы и стенки, работающие на сдвиг, должны быть изготовлены из фанерных листов.
не менее 4 ‘x 8’, за исключением границ и изменений в обрамлении, где минимум
размер листа должен составлять 24 дюйма, если все края листов меньшего размера не
поддерживаются рамочными элементами или блокировкой.

По краям всех листов должны быть предусмотрены элементы каркаса или блокировки.
в стенах сдвига.


Детали каркаса стены

сек. 2326.11.7. Трубы в стенах. Стержневые перегородки, содержащие
водопроводные, отопительные или другие трубы должны быть обрамлены таким образом, а балки под ними
с таким расстоянием, чтобы обеспечить надлежащий зазор для трубопровода. Где перегородка
такие трубы проходят параллельно балкам пола, балки под
такие перегородки должны быть удвоены и разнесены, чтобы обеспечить прохождение таких труб.
и будут соединены мостом. В местах прокладки водопроводных, отопительных или других труб.
или частично в перегородке, что требует разрезания подошв или пластин,
металлическая стяжка не менее 0.058 дюймов (1,47 мм) (гальванизированный калибр 16) и
Ширина 1 1/2 дюйма (38 мм) должна быть прикреплена к каждой пластине поперек и к каждой
сторона проема не менее шести гвоздей 16d.

сек. 2326.11.8. Мостовое соединение. Если не покрыт внутренней частью
или наружные настенные покрытия или обшивка, отвечающие минимальным требованиям
этого кодекса, все перегородки-стойки или стены со стойками, имеющими
отношение высоты к наименьшей толщине более 50 должно иметь перемычку не менее
толщиной более 2 дюймов (51 мм) и такой же ширины, как и установленные шпильки
плотно и прибита к нему, чтобы обеспечить адекватную боковую поддержку.

сек. 2326.11.9. Резка и надрез. В наружных стенах
и несущих перегородок, любые деревянные стойки можно разрезать или надрезать на глубину, не превышающую
превышает 25 процентов его ширины. Нарезание или надрезание шпилек на глубину
не более 40 процентов ширины шпильки допускается в ненесущих
перегородки не выдерживают никаких нагрузок, кроме веса перегородки.

сек. 2326.11.10. Скучно дыры. Отверстие не больше
диаметр более 40 процентов ширины стойки можно просверлить в любой деревянной стойке.Просверленные отверстия не превышают 60 процентов ширины шпильки.
в ненесущих перегородках или в любой стене, где каждая просверленная шпилька удваивается,
при условии, что таким образом просверлены не более двух последовательных сдвоенных шпилек.


Пожарная сигнализация

Противопожарная защита требуется на всех каркасных стенах на уровне потолка и пола.
Расстояние по вертикали между блокировками не должно превышать 10 футов. Блокировка
требуется между стойками вдоль и вровень с пролетом косоура лестницы
в боковинах лестничных клеток.Отверстия для труб, проходящие от одного этажа до
другой или в чердаке отверстие должно быть заполнено негорючими
материал, такой как стекловолокно, на линии стеновых панелей.

Противопожарные упоры должны быть минимум в 2 раза больше номинальной толщины, две толщины
Пиломатериал номинальным диаметром 1 дюйм со сломанными стыками внахлест, фанера 23/32 с подкладками
с фанерой 23/32, одна толщина 3/4 дюйма Тип 2-х часовой ДСП с
стыки на основе 3/4-дюймовых ДСП Тип 2-М, гипсокартона, минеральной ваты,
или другой негорючий материал, надежно закрепленный на месте.


Насколько толсты стены в типичном крошечном доме?

При строительстве крошечного дома размером не более 400 квадратных футов (37 квадратных метров) очевидно, что пространство будет в дефиците. Однако для простого (без разрешения) передвижения крошечного домика на колесах по дорогам многие люди придерживаются правила «8,5 на 40»: т.е. не более 8,5 футов в ширину и 40 футов в длину. Это дает площадь в 320 квадратных футов (30 квадратных метров) или меньше. Когда вы действительно думаете об этом, 8.5 футов — это не так уж и много: всего на фут или около того больше, чем у некоторых игроков НБА! Так что толщина стен действительно важна. Если вы выберете толстую древесину (для размещения толстой изоляции), вы можете обнаружить, что ваши внешние стены имеют размер почти 7 дюймов (18 см): это означает 14 дюймов + в целом для обеих сторон, что составляет почти 14% вашей ширины 8,5 футов! Так что вам действительно нужно подумать о толщине стен в крошечном доме.

В целом, при использовании стандартной древесины 2×4 дюйма, внешние стены будут иметь толщину чуть более 5 дюймов (или больше, если вы используете довольно громоздкий внешний сайдинг), а внутренние стены будут иметь толщину около 4½ дюймов (из-за гипсокартона на обе стороны).

В этой статье это более подробно рассматривается ниже, в том числе о том, как точно представить это на плане этажа, а также о том, можно ли уменьшить толщину стен, чтобы освободить все лишнее полезное пространство!

Содержание

Типичная толщина внешней стенки

Типичная внешняя стена, естественно, будет иметь деревянный каркас с гипсокартоном, прикрепленным к внутренней части. Снаружи к каркасу будет прикреплена обшивка из OSB или фанеры, а затем внешний сайдинг (облицовка), чтобы внешний вид вашего крошечного дома выглядел красиво.Другими словами, это будет выглядеть так:

Из вышеперечисленных материалов остаются очень тонкие материалы, такие как домашняя обертка, пароизоляция и гидроизоляционная лента на битумной основе, поскольку они оказывают незначительное влияние на ширину. Итого по толщине:

  • ½ ”: гипсокартон для внутренней отделки, который затем декорируется по мере необходимости.
  • 3½ дюйма: древесина 2×4 дюйма для деревянного каркаса, что составляет не 4 дюйма, а 3½ дюйма после фрезерования.
  • ⅜ ”: типичная толщина внешней обшивки, которая прикрепляется к внешней стороне деревянного каркаса (и помогает повысить устойчивость каркаса, а также дает сайдингу то, к чему прилипает).
  • ¾ ”: наружный сайдинг (также называемый облицовкой). Это может быть целый ряд материалов, включая тонкий металл, но обычная деревянная сайдинговая доска имеет толщину около дюйма.
  • 5⅛ ”: всего (13 см), с нашей« математической шляпой »!

Это может показаться не таким уж большим, но в сумме составит 10% общей ширины крошечного домика на колесах шириной 8,5 футов. Кроме того, некоторые люди в более холодном климате могут использовать более толстую древесину для стенового каркаса и могут также добавить 1-дюймовую изоляционную плиту из вспененного материала снаружи (перед сайдингом): добавляя до 15% (или более) общей ширины.Мы исследуем возможности для более тонких стен в следующем разделе, но прежде, чем мы это сделаем, мы хотели изучить некоторые из материалов различной толщины, которые вы можете использовать.

Толщина древесины, которую вы используете для деревянного каркаса, естественно, будет определять, сколько изоляции вы можете разместить между ними. Стандартная древесина 2×4 дюйма ограничит вас изоляционным материалом толщиной 3½ дюйма (или более тонким), который имеет тенденцию предлагать R-13 или R-15 из изоляционного материала . Однако при использовании древесины 2×6 дюймов (при толщине 5½ дюймов) более толстая изоляция, которую вы используете, обычно обеспечивает защиту R-20 или R-21 .

Это естественным образом добавит 2 дюйма к каждой стене и, таким образом, 4 дюйма в целом, увеличивая общее «использование» вашего крошечного дома шириной 8,5 футов (102 дюйма) с 10% до 14% . Естественно, это вопрос о том, нужна ли вам дополнительная ширина для изоляции.

Затем, естественно, вы можете получить гипсокартон толщиной ⅜ или ⅝ дюйма вместо более стандартного ½ дюйма. Обычно толщина гипсокартона не имеет большого значения (особенно для наружных стен, где гипсокартон находится только на одной стороне каркаса стены), но стоит отметить, что доступны разные толщины.

Мы упоминали об использовании ¾ ”сайдинга для стандартных деревянных досок, хотя это область, которую можно сократить. Поскольку сайдинг является декоративным, а не конструктивным / изоляционным, обратите внимание на другие варианты сайдинга. Вы можете использовать тонкие листы металла, которые могут быть толщиной до дюйма, в то время как гофрированный металл может фактически иметь большую толщину, чем ожидалось, из-за его «волнистого» рисунка.

Наконец, некоторые люди используют 1 дюйм изоляционной плиты из пенопласта за пределами внешней стены, между обшивкой и сайдингом:

Это опять же зависит от того, насколько холодно или тепло у вас климат, но дополнительные 2 дюйма в целом (с обеих сторон) также окажут заметное влияние на толщину вашей стены.

Теперь, когда мы покрыли материал разной толщины, возможно, самая толстая стена , которую вы найдете в крошечном домике (предназначенная для более холодного климата), будет составлять :

  • ⅝ ”: гипсокартон.
  • 5½ «: 2×6″ дерево для деревянного каркаса.
  • ⅜ ”: типичная толщина внешней обшивки, которая прикрепляется к внешней стороне деревянного каркаса (и помогает повысить устойчивость каркаса, а также дает сайдингу то, к чему прилипает).
  • 1 ”: изоляционная плита из вспененного материала.
  • 1 ”: наружный сайдинг.
  • 8½ ”: всего (21½ см).

Стены толщиной 17 дюймов с обеих сторон будут составлять 16,7% от общей ширины (для 8,5-футового крошечного дома на колесах).

В качестве альтернативы самая тонкая стена , которую вы, вероятно, можете получить (с использованием стандартных материалов и строительных технологий), будет:

  • ⅜ ”: гипсокартон.
  • 3½ «: 2×4″ дерево для деревянного каркаса.
  • ⅜ ”: типичная толщина внешней обшивки, которая прикрепляется к внешней стороне деревянного каркаса (и помогает повысить устойчивость каркаса, а также дает сайдингу то, к чему прилипает).
  • ⅛ ”: наружный сайдинг.
  • 4 дюйма: всего (11 см).

Это намного тоньше: толщина стенок менее 9 дюймов с обеих сторон составляет всего 8,8% от общей ширины нашего дома размером 8,5 футов.

Типичная толщина внутренней стенки

Стандартная внутренняя стена также будет иметь деревянный каркас с гипсокартоном с обеих сторон стены.Затем обе стороны будут декорированы по мере необходимости. Схема, показывающая примерную идею (без всяких украшений или защитных покрытий):

Таким образом, стандартная внутренняя стена будет иметь следующую толщину:

  • ½ ”: гипсокартон для помещения 1.
  • 3½ дюйма: древесина 2×4 дюйма для деревянного каркаса, что составляет не 4 дюйма, а 3½ дюйма после фрезерования.
  • ½ ”: гипсокартон для помещения 2.
  • 4½ дюйма: всего (11,4 см).

Это очень стандартно, хотя, как мы исследовали выше, гипсокартон также обычно можно купить толщиной ⅜ ”или ⅝” — конечно, это будет иметь очень небольшое общее влияние на толщину стены (не более ”).

Основное изменение стандартной внутренней стены 4½ дюйма — это если вы хотите получить дополнительную звуко- или теплоизоляцию , либо используя специальный звукоизоляционный или термически разработанный гипсокартон, либо путем включения воздушного барьера / зазора во внутреннюю конструкцию стены. . Некоторые специализированные гипсокартоны имеют толщину всего около ½ дюйма, хотя некоторые могут быть толще обычного (1–1½ дюйма). Плюс воздушный зазор, вероятно, тоже будет не менее 1 дюйма (3 см).

Таким образом, стремясь к дополнительной звуко / теплоизоляции, можно увидеть, что общая внутренняя стена будет иметь толщину 5½ дюймов (14 см) вместо .

Отображение толщины стен на планах этажей

При проектировании крошечного дома обязательно укажите толщину стен в подробных планах. Как мы видели выше, внешние стены могут занимать 9-17% ширины вашего крошечного дома, поэтому обязательно, чтобы в ваших подробных планах это учитывалось .

Вы должны обнаружить, что большинство платных программ для планирования этажей включает эту опцию (потому что толщина стен будет иметь значение для строителей, даже если строится особняк!), Хотя некоторые бесплатные версии поэтажных планов не всегда включают эту опцию. — особенно если они предназначены для быстрого двухмерного изображения вашего дома.К счастью, и RoomSketcher, и HomeStyler (два основных варианта планировщика этажей) включают возможность изменять толщину стен. Вы можете найти наш обзор лучших бесплатных и премиальных программ для проектирования крошечных домов здесь.

Можно ли сделать стены тоньше?

Стены, о которых мы упоминали ранее, в основном являются несущими стенами, даже несмотря на то, что ненесущие стены, как правило, имеют толщину 4½ дюйма для единообразия. Однако некоторые внутренние стены могут иметь толщину всего 2½ дюйма (в зависимости от ваших местных строительных норм), и они известны как «узкие стены» , которые не выдерживают нагрузку .

Узкие стены чаще всего используются для таких вещей, как шкафы, туалеты и разделение главной спальни с выделенной ванной / туалетом (иногда называемой ванной комнатой), и они сделаны из дерева 2х4 дюйма, но повернуты в другую сторону, чтобы кромка толщиной 2 дюйма (1½ дюйма после фрезерования) используется для обеспечения ширины. Затем на обе стороны накладывается ½-дюймовый гипсокартон, что приводит к узкой стене толщиной 2½ дюйма. Однако иногда дерево 2×2 дюйма используется вместо дерева 2×4 дюйма.

Стоит отметить, что эти не могут быть использованы для внешних стен : ваш крошечный дом не только будет холодным (из-за наличия всего 1½ дюйма изоляции), но они не будут достаточно стабильными (в том смысле, что они не будут адекватно выдерживают нагрузку на балки потолка).

Также могут быть ограничения местного строительного кодекса, такие как невозможность использовать узкие стены между спальнями (по нескольким причинам, в том числе из-за того, что их звукоизоляция была бы невысокой). Некоторые местные офисы планирования также могут не разрешить использование для узких стен на всех , поэтому не забудьте дважды проверить точные правила перед их использованием и сэкономить ценные 2 ».

Как толщина стенки может повлиять на пригодность к эксплуатации

В начале статьи мы упоминали, что стандартный крошечный домик на колесах (т.е. на прицепе) обычно можно перевозить по автомагистралям без специального разрешения, если он соответствует правилу «8,5 x 40» (т.е. не более 8,5 футов в ширину). Однако это может варьироваться от штата к штату, поэтому не принимайте правило «8,5 x 40» как евангелие!

Если вы решите, что 8,5 футов ширины будет недостаточно для того, что вы планируете построить, вы можете построить естественным образом и сверх этого: это просто означает, что вам нужно будет получить специальное разрешение на загрузку при транспортировке вашего ТОУ .

В среднем это может составлять около 65 долларов на состояние , так что это небольшая сумма, даже если вы пересечете несколько границ штатов (что потребует от вас оплаты в каждом штате: то есть 260 долларов, если вы пройдете в общей сложности четыре штата). Более подробную информацию о максимальном размере и весе крошечного домика на колесах без разрешения вы можете найти здесь. Однако есть и другие соображения по поводу строительства выше 8,5 футов, как TinyHouseBuild исследует в своем удобном руководстве.

Стандарты оформления — Строительные чертежи

нарисован внутри дверной распашной, и номер двери помещен внутри нее.В свою очередь, этот номер относится к расписанию дверей, в котором содержатся подробные сведения об этой отдельной двери. Затем эта информация соотносится с расписанием дверей, как описано в главе 10.

Двери и окна на виде сверху обычно имеют размеры по средней линии двери или окна и рамы, как показано на Рисунке 6-15. Этот метод позволяет дизайнеру довольно точно определить местонахождение двери, оставляя фактический грубый проем, отделку и другие

Рисунок 6-14 Каждой двери на этом частичном плане присвоен индивидуальный номер, который можно найти в прилагаемой спецификации дверей с указанием всех деталей каждой двери.

L0 и 5Y

Рисунок 6-14 Каждой двери на этом частичном плане присвоен индивидуальный номер, который можно найти в прилагаемой спецификации дверей с указанием всех деталей каждой двери.

— СОКРАЩЕНИЕ ДЛЯ «CENTERUNE»

сведения о допуске к застройщику. В каменной кладке указан дверной или оконный блок (имеющий точный размер блока). Изготовитель предоставляет (в обоих случаях) немного больший размер, чтобы установить и отрегулировать блок, чтобы он соответствовал проему. Примерный размер проема указан на плане или в таблице и обозначен аббревиатурой «R.O. «Этот RO включает дверь, раму и необходимые зазоры для установки устройства внутри рамы стены, как показано на Рисунке 6-16. Во многих случаях, когда дверная петля расположена близко к соседней стене, нет необходимости Измерьте центр двери (или рамы). Строитель знает, что дверь должна быть плотно прижата к стене и обеспечит надлежащие точные зазоры для работы и работ по отделке, как показано на Рисунке 6-17.

Рисунок 6-16 В кирпичных стенах дверные и оконные проемы имеют размеры по краям, а не по средней линии.Дверной или оконный блок центрируется в пространстве.

— УУИНДОУ

Рисунок 6-15 В рамных стенах двери и окна имеют размеры по их осевым линиям, обозначенные буквой C / L. Из них строитель устанавливает «черновые» проемы.

ЛАБОРАТОРИЯ 143

КУХНЯ

Рисунок 6-17 Когда дверь примыкает к стене, как на этом частичном плане ресторана, часто нет необходимости определять расположение двери. Строитель знает, что дверь должна плотно прилегать к соседней стене и обеспечит необходимые детали и зазоры.

КУХНЯ

Рис. 6-18. Окна в столовой на этом частичном плане прорисованы с некоторыми деталями, так как масштаб чертежа довольно велик.

h-wJt i tiiy o

ПИТАНИЕ

20 «ЛИСТ

ПЕРЕВОРОЧНЫЙ ПОТОЛОК

44 «x92»

Windows

Окна прорисовываются на поэтажных планах различными способами в соответствии с масштабом плана и стандартами офиса. Как правило, если масштаб достаточно велик, окна отображаются в зависимости от их стиля и типа операции.Окно с двойными створками показано на Рисунке 6-18. На рис. 6-19 представлен полный список различных стилей окон и того, как они будут отображаться на виде в плане. Если масштаб чертежа небольшой, например, V8 «= 1′-0» (1: 100 метрический) или W = 1′-0 «(1: 200 метрический) в крупных коммерческих проектах, тогда следует использовать простую одинарную линию. использовать вместе с символом, относящимся к расписанию окон для получения более подробной информации (Рисунок 6-20). Графические и текстовые обозначения на планах этажей

Поскольку план этажа является центральным или основным чертежом любого набора строительной документации, на него должны быть даны перекрестные ссылки с другими чертежами и справочными материалами.Графические символы и текстовые обозначения включены в план этажа, чтобы сделать его максимально ясным.

Названия комнат и примечания

На плане этажа есть ряд элементов, которые нельзя изобразить графически и которые необходимо отметить. Они будут различаться в зависимости от масштаба плана этажа, его сложности, а также от того, является ли он проектным или строительным чертежом (Рисунок 6-21). Использование помещения обычно указывается как на проектных, так и на строительных чертежах. В небольших проектах указывается только название комнаты, тогда как в больших коммерческих помещениях может быть назначен номер (или и имя, и номер).Если комната слишком мала, чтобы вписать ее название или номер на плане этажа, это пишется сразу за пределами помещения с выноской, указывающей на комнату, как показано на рис. 6-22. Примерный размер комнаты иногда указывается под названием комнаты; однако это делается в основном на презентационных чертежах, поскольку размер обычно недостаточно точен для строительного чертежа. На строительном чертеже

ОКНА — ТИПЫ, ОПРЕДЕЛЕННЫЕ ОПЕРАЦИЕЙ

Фиксированная створка, двойная створка, одинарная и двойная навесная маркиза и выдвижной бункер

НАВЕСЫВАЕТСЯ НА БОКУ И ОТКЛЮЧАЕТСЯ НАРУЖУ.

НАВЕСЫВАЕТСЯ НА БОКУ И ОТКЛЮЧАЕТСЯ НАРУЖУ.

НАВЕСЫВАЕТСЯ ПО СТОРОНАМ И ОТКРЫВАЕТСЯ.

НАВИГАЕТСЯ ПО СТОРОНАМ И ОТКРЫВАЕТСЯ.

СОДЕРЖИТ ДВЕ СТРЕЛКИ, КОТОРЫЕ СДВИГАЕТСЯ. Ф ОТВЕ ФИКСИРОВАННЫЙ, АГРЕГАТ ОДНОНАГРАННЫЙ

ТЮНИНГИ НАВЕСЫ НА ВЕРХНЕЕ — ЧАСТО ВЫКЛЮЧАЮТСЯ, ЧТОБЫ ПРОТИВ ДОЖДЯ.

СОДЕРЖИТ ДВЕ СТРЕЛКИ, НАКЛАДКИ. Ф ОТВЕ НА ФИКСИРОВАННЫЙ, АГРЕГАТ ОДНОКОМПОНЕНТНЫЙ

ТЮНИНГИ НАВЕСЫ НА ВЕРХНЕЕ — ЧАСТО ВЫКЛЮЧАЮТСЯ, ЧТОБЫ НЕ ДОЖДЬ

HOPPERS ABE BOTTOM HINGED — CFTEN SUJING IN, ЧТОБЫ ПРОТИВ ДОЖДЯ.-

HOPPERS ABE BOTTOM HINGING — CFTEN SUJING IN IN TO KING OUT, чтобы не допустить дождя. —

МОЖЕТ ИЗГОТОВИТЬСЯ С ОДНОЙ ИЛИ ОБЕИМИ СТВОРКАМИ В КАЧЕСТВЕ РАЗДВИЖНЫХ БЛОКОВ, ТАКЖЕ ИЗГОТОВЛЕННЫМ В КАЧЕСТВЕ ОДНОГО ЦЕНТРАЛЬНОГО ФИКСИРОВАННОГО БЛОКА И РАЗДВИЖНЫХ БЛОКОВ С КАЖДОЙ СТОРОНЫ —

МОЖЕТ ИЗГОТОВИТЬСЯ С ОДНОЙ ИЛИ ОБЕИМИ СТВОРКАМИ В КАЧЕСТВЕ РАЗДВИЖНЫХ БЛОКОВ, ТАКЖЕ ИЗГОТОВЛЕННЫМ В КАЧЕСТВЕ ОДНОГО ЦЕНТРАЛЬНОГО ФИКСИРОВАННОГО БЛОКА И РАЗДВИЖНЫХ БЛОКОВ С КАЖДОЙ СТОРОНЫ —

СЕРИЯ МАЛЫХ НАВЕСНЫХ ОТВОДОВ; СЕКЦИИ СТЕКЛА ВСЕ РАБОТАЮТ ВМЕСТЕ ИЛИ ПО СЕКЦИЯМ.

ПОВОРОТ НА 2 ТОЧКИ В ЦЕНТРЕ ВЕРХНЕГО И НИЖНЕГО ОКНА.ИСПОЛЬЗУЕТСЯ ДЛЯ ПРОСТОЙ ОЧИСТКИ Cfr.

ПОВОРОТ НА 2 ТОЧКИ В ЦЕНТРЕ ВЕРХНЕГО И НИЖНЕГО ОКНА. ИСПОЛЬЗУЕТСЯ ДЛЯ ПРОСТОЙ ОЧИСТКИ Cfr.

ОТКРЫВАЕТСЯ И СДВИГАЕТСЯ В ОДНЕ ВРЕМЯ ЧЕРЕЗ СПЕЦИАЛЬНОЕ ПОДКЛЮЧЕНИЕ МОЖЕТ БЫТЬ ТИПОВЫМ КАК КОРПУС БУНКЕРА ИЛИ ТЕНТ.

ОТКРЫВАЕТСЯ И СДВИГАЕТСЯ В ОДНЕ ВРЕМЯ ЧЕРЕЗ СПЕЦИАЛЬНОЕ ПОДКЛЮЧЕНИЕ МОЖЕТ БЫТЬ ТИПОВЫМ КАК КОРПУС БУНКЕРА ИЛИ ТЕНТ.

УКАЗЫВАЕТ • ДЕЙСТВИЕ ПЕТЛИ

УКАЗАНИЯ — РАЗДВИЖНАЯ РАЗДЕЛ

ТИПОВЫЕ УГЛЫ

Рисунок 6-19 Различные типы окон, определяемые их работой, показаны на виде сверху и на высоте.

Рисунок 6-21 Презентационный чертеж, показанный слева, показывает помещения, мебель и другие предметы, включая некоторые

Рис. 6-21 Презентационный чертеж, показанный слева, показывает помещения, мебель и другие предметы, в том числе некоторые

Нарисовать планы этажей на бумаге

Мэг Эскотт

Для рисования планов этажей доступно множество программных пакетов, но если вы не хотите их использовать (или, как я, не хотите использовать их все время), то на этой странице рассказывается, как рисовать планы этажей на бумаге. .

Когда использовать программное обеспечение и когда использовать бумагу

Мне нравится использовать сочетание программного обеспечения и бумажных инструментов. В
начало процесса, если вы пробуете много идей, которые я нахожу
что это может быть быстрее на бумаге, чем с помощью программного обеспечения.
Когда вам нравится идея и вы хотите увидеть, работает ли она в точных размерах
тогда это быстрее с программным обеспечением.

Выбор единиц и масштаба для черчения поэтажных планов

Прежде чем приступить к рисованию плана этажа, прежде всего необходимо выяснить, какие единицы и масштаб вы собираетесь использовать.

шт.

Вы собираетесь работать в футах и ​​дюймах (британская система мер) или в миллиметрах, сантиметрах и метрах (метрическая система)?

Это решение, вероятно, примет страна, в которой находится ваш дом. В США это, как правило, имперская система. В Великобритании и Австралии чаще работают в метрической системе. Канада немного смешанная, но официально метрическая.

Масштаб

Теперь посмотрим на масштаб.Чтобы определиться с масштабом, вам нужно решить, на каком размере бумаги вы собираетесь работать.

Если вы работаете над всем домом, или только над частью, или комнатой, вам нужно убедиться, что вы можете уместить проектируемое пространство на бумаге.

Большинство готовых архитектурных чертежей выполняется на бумаге очень большого размера, что не будет практичным до стадии окончательного чертежа.

Я бы посоветовал работать с бумагой формата Letter (8,5 x 11 дюймов), если вы находитесь в США / Канаде, и с бумагой формата A4, если вы находитесь в Австралии / Великобритании.Мне нравится этот размер, потому что его очень легко носить с собой, он легко помещается на столе или на столе, и его не нужно катать. Если ваш новый дом не будет довольно большим, вы сможете разместить свой дизайн на бумаге этого размера, используя разумную шкалу.

В таблицах ниже показано, какой размер дома вы можете уместить на бумаге какого размера, с какой шкалой для британской и метрической системы.

Императорский

Я включил стандартные размеры бумаги, от маленького до большого.

Размер бумаги

S кал

Макс.размеры конструкции

Letter (8,5 x 11 дюймов)

От 1/4 дюйма до фута

(1/4 «= 1’0»)

1:48

34 x 44 фута

Letter (8,5 x 11 дюймов)

1/8 дюйма на фут

(1/8 дюйма = 1’0 дюйма)

1:96

68 x 88 футов

Письмо (8.5 x 11 дюймов)

1/12 дюйма на фут

(1/12 дюйма = 1’0 дюйма)

1: 144

102 x 132 футов

Letter (8,5 x 11 дюймов)

1/16 дюйма на фут

(1/16 дюйма = 1’0 дюйма)

1: 192

136 x 176 футов

Таблоид (11 x 17 дюймов)

От 1/4 дюйма до фута

(1/4 «= 1’0»)

1:48

68 x 88 футов

Таблоид (11 x 17 дюймов)

1/8 дюйма на фут

(1/8 дюйма = 1’0 дюйма)

1:96

136 x 176 футов

Таблоид (11 x 17 дюймов)

1/12 дюйма на фут

(1/12 дюйма = 1’0 дюйма)

1: 144

132 x 204 фута

Таблоид (11 x 17 дюймов)

1/16 дюйма на фут

(1/16 дюйма = 1’0 дюйма)

1: 192

176 x 272 футов

Арка D (24 x 36 дюймов)

От 1/4 дюйма до фута

(1/4 «= 1’0»)

1:48

96 x 144 фута

Арка D (24 x 36 дюймов)

1/8 дюйма на фут

(1/8 дюйма = 1’0 дюйма)

1:96

192 x 288 футов

Арка D (24 x 36 дюймов)

1/12 дюйма на фут

(1/12 дюйма = 1’0 дюйма)

1: 144

288 x 432 футов

Арка D (24 x 36 дюймов)

1/16 дюйма на фут

(1/16 дюйма = 1’0 дюйма)

1: 192

384 x 576 футов

Метрическая система

Размер бумаги

Предлагаемый масштаб

Макс.размеры конструкции

A4 (21 x 27,5 дюймов)9 см)

от 2 см до 1 м

2 см = 1 м

1:50

10,5 x 13,95 м

A4 (21 x 27,9 см)

от 1 см до 1 м

1 см = 1 м

1: 100

21 x 27,9 м

A4 (21 x 27,9 см)

от 1 см до 2 м

1 см = 2 м

1: 200

42 x 21 м

A3 (29.7 x 42 см)

от 2 см до 1 м

2 см = 1 м

1:50

13,95 x 24 м

A3 (29,7 x 42 см)

от 1 см до 1 м

1 см = 1 м

1: 100

21 x 27,9 м

A3 (29,7 x 42 см)

от 1 см до 2 м

1 см = 2 м

1: 200

42 x 21 м

A1 (59.4 x 84,1 см)

от 2 см до 1 м

2 см = 1 м

1:50

29,7 x 42,05 м

A1 (59,4 x 84,1 см)

от 1 см до 1 м

1 см = 1 м

1: 100

59,4 x 84,1 м

A1 (59,4 x 84,1 см)

от 1 см до 2 м

1 см = 2 м

1: 200

118.8 x 168,2 м

Миллиметровая бумага, калька и архитекторская шкала — действительно полезные инструменты. Вы можете купить их в Магазине HPH.

Наконечник для вашей линейки

Весы

Architects имеют форму треугольника. Я использую зажим сверху, чтобы мне было легко найти сторону, которую я использую, потому что я знаю, какая сторона линейки должна быть вверху.

Масштаб архитекторов с клипом, чтобы показать, какой масштаб я использую

Как нарисовать план этажа

Взгляните на разработку собственного плана этажа, чтобы определить пространство в вашем доме, а затем возвращайтесь сюда.

Наружные стены

Начните с рисования внешних стен дома. Это может помочь начать с основного контура дома — скажем, базового прямоугольника, а затем добавить к нему любые неровности. Если у вас есть внутренние измерения, а не внешние, выясните, какова толщина стенки. Это будет зависеть от способа возведения стен. Внутренние стены обычно имеют толщину около 4 1/2 дюймов, а внешние стены — около 6 1/2 дюймов. Если вы собираетесь рисовать планы этажей для существующего дома, измерьте толщину стен у дверей и / или окон.

Внутренние кости

Далее мы переходим внутрь. Начать имеет смысл с основного этажа. На этом этапе вы хотите добавить только кости дома. Это любые стены, которые, по вашему мнению, будут несущими. Если вы разрабатываете или изменяете план дома или реконструируете дом, рисуйте только те стены, которые, как вы знаете, собираетесь сохранить.

Когда вы закончите работу с костями, вы закончите работу с этим листом бумаги.

Достань кальку

Так что это секрет профессионалов.Возьмите домашний лист с костями и положите сверху кальку. Вы можете использовать рулон кальки или книгу кальки. Профи используют рулон, но мне нравятся книги, потому что шов книги помогает удерживать страницу на месте. Вы можете просто обвести верхнюю часть костей и поработать над остальными пространствами на плане этажа.

Использование кальки для рисования планов этажей

Внутреннее пространство

Заполните оставшиеся внутренние пространства. Лучше всего будет работать, если вы начнете с самых больших пространств и перейдете к меньшим.

Планировка кухни и ванной комнаты

Добавьте планировку вашей кухни и ванной комнаты. У меня есть страница о том, как рисовать символы плана этажа, на которой есть все, что вам нужно для этого.

Остальные данные

Если это не естественно, вставлять двери и окна так, как вы их вставляете как.

Другие инструменты для домашнего дизайна на бумажной основе

Вот страницы, посвященные инструментам для домашнего дизайна на бумажной основе.

Следующие страницы также могут быть полезны: символы плана этажа, символы чертежей, бесплатное программное обеспечение плана этажа

Основные типы стен: институциональные, коммерческие и жилые

Этот блог сопровождает 1-2-минутные видеоролики (7-10) из www.GreenBuildingSolutions.org новых обучающих видео. Они представляют Джозефа Lstiburek, доктора философии, P.Eng, научного сотрудника ASHRAE BuildingScience.com, международного эксперта в области строительной науки. Видео здесь.

Стена, обеспечивающая эффективный уровень изоляции независимо от внешнего климата, существует в трех различных основных типах стен. Это институциональная стена, коммерческая стена и жилая стена. Эти три различных дизайна предлагают оптимизированный термодинамический потенциал практически в любом климате.Мы имеем в виду субарктический, очень холодный, холодный, жарко-сухой, жарко-влажный и другие типы сложных климатических условий, требующих изоляции.

Институциональная стена

Архитекторы и дизайнеры преувеличивают, называя стену учреждения «стеной 500 лет» из-за ее прочности. Каменная или бетонная кладка обеспечивает структуру водой, воздухом, паром и слоями контроля температуры за пределами этой поверхности. Он имеет внутреннюю часть из гипсокартона и сохнет от контрольных слоев наружу и от контрольных слоев внутрь, что дает ему способность адаптироваться к влажности для существования в различных климатических условиях.Строители обычно не строят стены на сотни лет или на последние поколения. И они говорят, что на это потребуется много времени, чтобы заплатить за это. (См. Видео 1:11 «Идеальная» стена, часть 7 — Институциональная стена)

Коммерческая стена

Коммерческая стена — второй из трех основных типов стен; вариация того, что мы концептуально называем «идеальной стеной». Он меняет кладку на стальные шпильки. Как и стена в учреждении, архитекторы облицовывают интерьер гипсокартоном.Его внутренняя полость для стальных стоек практически не содержит теплоизоляции. Однако, поскольку в этой стене используется сталь, проводник тепла, передача энергии через конструкцию снаружи внутрь каркаса очень высока, что делает практически невозможным контроль температуры стены через изоляцию полости.

Таким образом, эта стена использует контрольные слои снаружи своей структуры. Что касается стального каркаса, дизайнеры могут изолировать стену снаружи сплошной изоляцией, чтобы предотвратить попадание тепла и холода на каркас.Изоляция, добавленная к полости стальной стены, снижает передачу звука.

Жилая стена

Последний вариант из трех основных типов стен — это жилой вариант, в котором для внутренней полости можно использовать много изоляционных материалов. Стекловолокно, целлюлоза, пенопласт, полистирол — варианты утепления жилой стены обширны, так как конфигурация контрольных слоев является наиболее важной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *